Harnessing Nature's Power: Plant and Polymeric-Based Antibacterials as Potential Therapeutics for Infectious Skin Wound Healing

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2025-03-03 DOI:10.1002/bip.70007
Rasoul Kheradmandi, Sepehr Zamani, Mohammad Kamalabadi Farahani, Arian Ehterami, Majid Salehi
{"title":"Harnessing Nature's Power: Plant and Polymeric-Based Antibacterials as Potential Therapeutics for Infectious Skin Wound Healing","authors":"Rasoul Kheradmandi,&nbsp;Sepehr Zamani,&nbsp;Mohammad Kamalabadi Farahani,&nbsp;Arian Ehterami,&nbsp;Majid Salehi","doi":"10.1002/bip.70007","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This comprehensive review explores the potential of plant- and biopolymeric-based antibacterials as innovative therapeutic agents for infectious skin wound healing. By researching the antibacterial properties of various plants, the review highlights their application in skin tissue engineering. Beyond reviewing antibacterial plant extracts, the article delves into the limitations these natural compounds face, such as hydrophilicity, drug release rates, cell attachment, and scaffold stability when integrated into tissue engineering constructs. The review also emphasizes the role of biopolymeric materials, hydrogel optimization, and crosslinkers to improve scaffold performance. This review provides a roadmap for future research by addressing critical factors in scaffold construction. In the end, it aims to guide the development of more effective wound dressings and tissue scaffolds, combining the natural power of plants with advanced biopolymeric materials for enhanced wound healing therapies.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This comprehensive review explores the potential of plant- and biopolymeric-based antibacterials as innovative therapeutic agents for infectious skin wound healing. By researching the antibacterial properties of various plants, the review highlights their application in skin tissue engineering. Beyond reviewing antibacterial plant extracts, the article delves into the limitations these natural compounds face, such as hydrophilicity, drug release rates, cell attachment, and scaffold stability when integrated into tissue engineering constructs. The review also emphasizes the role of biopolymeric materials, hydrogel optimization, and crosslinkers to improve scaffold performance. This review provides a roadmap for future research by addressing critical factors in scaffold construction. In the end, it aims to guide the development of more effective wound dressings and tissue scaffolds, combining the natural power of plants with advanced biopolymeric materials for enhanced wound healing therapies.

Abstract Image

利用自然的力量:植物和聚合物基抗菌剂作为感染性皮肤伤口愈合的潜在疗法
这篇综合综述探讨了植物和生物聚合物为基础的抗菌药物作为感染性皮肤伤口愈合的创新治疗剂的潜力。通过对各种植物抗菌特性的研究,综述了其在皮肤组织工程中的应用。除了回顾抗菌植物提取物外,本文还深入研究了这些天然化合物面临的局限性,如亲水性、药物释放率、细胞附着以及与组织工程构建相结合时支架的稳定性。综述还强调了生物高分子材料、水凝胶优化和交联剂在提高支架性能方面的作用。这篇综述通过解决脚手架施工中的关键因素为未来的研究提供了路线图。最后,它旨在指导更有效的伤口敷料和组织支架的开发,将植物的天然力量与先进的生物聚合物材料相结合,以增强伤口愈合治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信