Strength–Ductility Synergy of Lightweight High Entropy Alloys

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fainah Madewu, Nicholus Malatji, Mxolisi Brendon Shongwe, Tawanda Marazani, Lehlogonolo Rudolf Kanyane
{"title":"Strength–Ductility Synergy of Lightweight High Entropy Alloys","authors":"Fainah Madewu,&nbsp;Nicholus Malatji,&nbsp;Mxolisi Brendon Shongwe,&nbsp;Tawanda Marazani,&nbsp;Lehlogonolo Rudolf Kanyane","doi":"10.1002/eng2.70042","DOIUrl":null,"url":null,"abstract":"<p>Lightweight high entropy alloys (LWHEAs) are a unique class of materials that combine numerous principal elements such as Al, Mg, and Ti, in equiatomic or near-equiatomic ratios. These alloys are suitable for high-performance applications in the aerospace, automotive, and defense industries due to their exceptional balance of lightweight, high strength, and superior ductility. The biggest obstacle in the development of LWHEAs is to attain a strength–ductility synergy. The mechanical performance of these alloys is influenced by intricate interactions between solid-solution strengthening, lattice distortion, and phase stability mechanisms, as well as intricate deformation processes like transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP). There remains a critical knowledge gap regarding how process parameters and processing methods influence the mechanical properties and microstructure, which are key factors in determining the strength–ductility synergy of LWHEAs. This study evaluated and figured out that the balance between strength and ductility in LWHEAs can be enhanced by optimizing microstructure through customized alloying and heat treatments. Various strategies, including the introduction of coherent precipitates, hierarchical structures, and grain refinement have also demonstrated usefulness in enhancing mechanical performance. The article presented a detailed review of the recent progress in the attainment of strength–ductility synergy in LWHEAs.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight high entropy alloys (LWHEAs) are a unique class of materials that combine numerous principal elements such as Al, Mg, and Ti, in equiatomic or near-equiatomic ratios. These alloys are suitable for high-performance applications in the aerospace, automotive, and defense industries due to their exceptional balance of lightweight, high strength, and superior ductility. The biggest obstacle in the development of LWHEAs is to attain a strength–ductility synergy. The mechanical performance of these alloys is influenced by intricate interactions between solid-solution strengthening, lattice distortion, and phase stability mechanisms, as well as intricate deformation processes like transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP). There remains a critical knowledge gap regarding how process parameters and processing methods influence the mechanical properties and microstructure, which are key factors in determining the strength–ductility synergy of LWHEAs. This study evaluated and figured out that the balance between strength and ductility in LWHEAs can be enhanced by optimizing microstructure through customized alloying and heat treatments. Various strategies, including the introduction of coherent precipitates, hierarchical structures, and grain refinement have also demonstrated usefulness in enhancing mechanical performance. The article presented a detailed review of the recent progress in the attainment of strength–ductility synergy in LWHEAs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信