Evaluation of Mechanical Strength, Translucency, and Microstructure in Graded Zirconia Layers Before and After Hydrothermal Aging

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Pablo Machado Soares, Luiza Freitas Brum Souza, Lucas Saldanha da Rosa, Luiz Felipe Valandro, Lucio Strazzabosco Dorneles, Alice Penteado Holkem, Paola de Azevedo Mello, Edson Irineu Müller, Atais Bacchi, Gabriel Kalil Rocha Pereira
{"title":"Evaluation of Mechanical Strength, Translucency, and Microstructure in Graded Zirconia Layers Before and After Hydrothermal Aging","authors":"Pablo Machado Soares,&nbsp;Luiza Freitas Brum Souza,&nbsp;Lucas Saldanha da Rosa,&nbsp;Luiz Felipe Valandro,&nbsp;Lucio Strazzabosco Dorneles,&nbsp;Alice Penteado Holkem,&nbsp;Paola de Azevedo Mello,&nbsp;Edson Irineu Müller,&nbsp;Atais Bacchi,&nbsp;Gabriel Kalil Rocha Pereira","doi":"10.1002/jbm.b.35550","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study aimed to evaluate the monotonic and fatigue strength, translucency, topography, and grain size of different layers in two types of graded zirconia, both before and after hydrothermal aging. A total of 180 bar-shaped specimens (<i>n</i> = 15 per group) were prepared from each layer (cervical, transitional, and incisal) of two graded zirconias (IPS e.max ZirCAD MT Multi—4 mol% yttrium stabilized at the cervical region and 5 mol% at the incisal region; IPS e.max ZirCAD Prime, Ivoclar AG—3 mol% yttrium stabilized at the cervical region and 5 mol% at the incisal region) with dimensions of 14.0 × 4.0 × 3.0 mm, following ISO 6872 standards for a three-point-bending test. These specimens were divided into two groups: baseline and hydrothermal aging (134°C under 2 bars of pressure for 20 h). Monotonic and fatigue three-point bending tests (initial stress: 250 MPa/5000 cycles at 20 Hz; increments: 50 MPa/step) were performed until fracture. The translucency parameter (TP00) was calculated using the CIEDE2000 formula, and <i>L</i>*, <i>a</i>*, <i>b</i>* color coordinates were measured on disc-shaped specimens (<i>n</i> = 6 per layer; Ø = 10 mm, 1 mm thickness) before and after aging. Additional analyses included topography, fractography, and grain size. Data were analyzed using three-way ANOVA, Kaplan–Meier, and Mantel-Cox post hoc tests (log-rank). Hydrothermal aging decreased fatigue flexural strength across all layers and types of graded zirconia. After aging, the fatigue flexural strength of Prime zirconia was higher than that of MT Multi in the cervical layer. The cervical layers exhibited the highest flexural strength and smallest grain size, while incisal layers showed higher translucency compared to other layers. The induced aging protocol impacted the mechanical properties of the graded zirconia layers. Each layer within the multilayer zirconia systems displayed distinct mechanical, microstructural, and optical properties, with variations depending on the specific zirconia material. Overall, all layers demonstrated satisfactory performance, supporting the use of multilayer zirconia systems.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35550","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to evaluate the monotonic and fatigue strength, translucency, topography, and grain size of different layers in two types of graded zirconia, both before and after hydrothermal aging. A total of 180 bar-shaped specimens (n = 15 per group) were prepared from each layer (cervical, transitional, and incisal) of two graded zirconias (IPS e.max ZirCAD MT Multi—4 mol% yttrium stabilized at the cervical region and 5 mol% at the incisal region; IPS e.max ZirCAD Prime, Ivoclar AG—3 mol% yttrium stabilized at the cervical region and 5 mol% at the incisal region) with dimensions of 14.0 × 4.0 × 3.0 mm, following ISO 6872 standards for a three-point-bending test. These specimens were divided into two groups: baseline and hydrothermal aging (134°C under 2 bars of pressure for 20 h). Monotonic and fatigue three-point bending tests (initial stress: 250 MPa/5000 cycles at 20 Hz; increments: 50 MPa/step) were performed until fracture. The translucency parameter (TP00) was calculated using the CIEDE2000 formula, and L*, a*, b* color coordinates were measured on disc-shaped specimens (n = 6 per layer; Ø = 10 mm, 1 mm thickness) before and after aging. Additional analyses included topography, fractography, and grain size. Data were analyzed using three-way ANOVA, Kaplan–Meier, and Mantel-Cox post hoc tests (log-rank). Hydrothermal aging decreased fatigue flexural strength across all layers and types of graded zirconia. After aging, the fatigue flexural strength of Prime zirconia was higher than that of MT Multi in the cervical layer. The cervical layers exhibited the highest flexural strength and smallest grain size, while incisal layers showed higher translucency compared to other layers. The induced aging protocol impacted the mechanical properties of the graded zirconia layers. Each layer within the multilayer zirconia systems displayed distinct mechanical, microstructural, and optical properties, with variations depending on the specific zirconia material. Overall, all layers demonstrated satisfactory performance, supporting the use of multilayer zirconia systems.

评估水热老化前后分级氧化锆层的机械强度、半透明度和微观结构
研究了两种分级氧化锆热液时效前后各层的单调疲劳强度、透光性、形貌和晶粒尺寸。从两种分级氧化锆(IPS e.max ZirCAD MT multi)的每一层(颈椎、过渡和切牙)制备180个条形标本(n = 15),每组15个;IPS e.max ZirCAD Prime, Ivoclar AG-3 mol%钇,在颈椎区域稳定,在切牙区域稳定5 mol%),尺寸为14.0 × 4.0 × 3.0 mm,符合ISO 6872三点弯曲测试标准。这些样品分为两组:基线和水热老化(134°C, 2 bar压力,20 h)。单调和疲劳三点弯曲试验(初始应力:250 MPa/5000次,20 Hz;增量:50 MPa/步),直至断裂。采用CIEDE2000公式计算半透明参数(TP00),并在圆盘状试样(每层n = 6;Ø = 10mm,厚度1mm)老化前后。附加分析包括形貌、断口形貌和晶粒尺寸。数据分析采用三向方差分析、Kaplan-Meier和Mantel-Cox事后检验(log-rank)。热液时效降低了氧化锆各层和各类型的疲劳弯曲强度。老化后,Prime zirconia在颈层的疲劳弯曲强度高于MT Multi。颈椎层具有最高的抗弯强度和最小的颗粒尺寸,而切口层具有较高的半透明性。诱导时效对氧化锆层的力学性能有影响。多层氧化锆系统中的每一层都显示出不同的机械、微观结构和光学特性,并根据特定的氧化锆材料而变化。总体而言,所有层都表现出令人满意的性能,支持多层氧化锆体系的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信