A criterion for selecting the appropriate one from the trained models for model-based offline policy evaluation

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chongchong Li, Yue Wang, Zhi-Ming Ma, Yuting Liu
{"title":"A criterion for selecting the appropriate one from the trained models for model-based offline policy evaluation","authors":"Chongchong Li,&nbsp;Yue Wang,&nbsp;Zhi-Ming Ma,&nbsp;Yuting Liu","doi":"10.1049/cit2.12376","DOIUrl":null,"url":null,"abstract":"<p>Offline policy evaluation, evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning. At present, the model-based offline policy evaluation (MBOPE) is widely welcomed because of its easy to implement and good performance. MBOPE directly approximates the unknown value of a given policy using the Monte Carlo method given the estimated transition and reward functions of the environment. Usually, multiple models are trained, and then one of them is selected to be used. However, a challenge remains in selecting an appropriate model from those trained for further use. The authors first analyse the upper bound of the difference between the approximated value and the unknown true value. Theoretical results show that this difference is related to the trajectories generated by the given policy on the learnt model and the prediction error of the transition and reward functions at these generated data points. Based on the theoretical results, a new criterion is proposed to tell which trained model is better suited for evaluating the given policy. At last, the effectiveness of the proposed criterion is demonstrated on both benchmark and synthetic offline datasets.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"10 1","pages":"223-234"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12376","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12376","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Offline policy evaluation, evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning. At present, the model-based offline policy evaluation (MBOPE) is widely welcomed because of its easy to implement and good performance. MBOPE directly approximates the unknown value of a given policy using the Monte Carlo method given the estimated transition and reward functions of the environment. Usually, multiple models are trained, and then one of them is selected to be used. However, a challenge remains in selecting an appropriate model from those trained for further use. The authors first analyse the upper bound of the difference between the approximated value and the unknown true value. Theoretical results show that this difference is related to the trajectories generated by the given policy on the learnt model and the prediction error of the transition and reward functions at these generated data points. Based on the theoretical results, a new criterion is proposed to tell which trained model is better suited for evaluating the given policy. At last, the effectiveness of the proposed criterion is demonstrated on both benchmark and synthetic offline datasets.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信