eDNA metabarcoding-based source attribution of fecal indicator bacteria exceedances in urban freshwater beaches, sand and rivers†

IF 3.5 Q3 ENGINEERING, ENVIRONMENTAL
Faizan Saleem, Jennifer L. Jiang, Enze Li, Kevin L. Tran, Herb E. Schellhorn and Thomas A. Edge
{"title":"eDNA metabarcoding-based source attribution of fecal indicator bacteria exceedances in urban freshwater beaches, sand and rivers†","authors":"Faizan Saleem, Jennifer L. Jiang, Enze Li, Kevin L. Tran, Herb E. Schellhorn and Thomas A. Edge","doi":"10.1039/D4VA00221K","DOIUrl":null,"url":null,"abstract":"<p >Freshwater beach quality is routinely tested by measuring fecal indicator bacteria, which can assess water quality but cannot identify sources of fecal contamination. We compared eDNA metabarcoding and microbial source tracking (MST) digital PCR methods to identify fecal contamination sources in water and sand at four urban Lake Ontario beaches and two nearby river mouth locations. eDNA sequences matched mammal, bird, and fish taxa known in the study area. Human eDNA sequences were prominent in all water and sand samples such that they had less value for discriminating between sewage occurrence at sites. Mallard duck, muskrat, beaver, raccoon, gull, robin, chicken, red fox, and cow eDNA sequences were common across all locations. Dog, Canada goose, and swan eDNA sequences were more common in Toronto beach waters, suggesting localized sources. MST results were generally consistent with eDNA, such as finding the Gull4 DNA marker and the human mitochondrial DNA marker in most water and sand samples. Chicken, cow, and dog eDNA sequences and the human bacterial MST DNA marker often showed a higher frequency of occurrence on Beach Action Value (BAV) exceedance days. The surprisingly widespread detection of chicken and cow eDNA sequences was likely from incompletely digested human food, raising caution for interpreting eDNA results related to food animals in sewage-contaminated urban settings. Combined use of MST and eDNA methods provided a more comprehensive characterization of potential fecal contamination sources, including diverse wildlife species at the human–animal One Health interface, that can guide targeted beach-specific water monitoring and risk management strategies.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":" 3","pages":" 456-468"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/va/d4va00221k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/va/d4va00221k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Freshwater beach quality is routinely tested by measuring fecal indicator bacteria, which can assess water quality but cannot identify sources of fecal contamination. We compared eDNA metabarcoding and microbial source tracking (MST) digital PCR methods to identify fecal contamination sources in water and sand at four urban Lake Ontario beaches and two nearby river mouth locations. eDNA sequences matched mammal, bird, and fish taxa known in the study area. Human eDNA sequences were prominent in all water and sand samples such that they had less value for discriminating between sewage occurrence at sites. Mallard duck, muskrat, beaver, raccoon, gull, robin, chicken, red fox, and cow eDNA sequences were common across all locations. Dog, Canada goose, and swan eDNA sequences were more common in Toronto beach waters, suggesting localized sources. MST results were generally consistent with eDNA, such as finding the Gull4 DNA marker and the human mitochondrial DNA marker in most water and sand samples. Chicken, cow, and dog eDNA sequences and the human bacterial MST DNA marker often showed a higher frequency of occurrence on Beach Action Value (BAV) exceedance days. The surprisingly widespread detection of chicken and cow eDNA sequences was likely from incompletely digested human food, raising caution for interpreting eDNA results related to food animals in sewage-contaminated urban settings. Combined use of MST and eDNA methods provided a more comprehensive characterization of potential fecal contamination sources, including diverse wildlife species at the human–animal One Health interface, that can guide targeted beach-specific water monitoring and risk management strategies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信