Synthesis and electrochemical evaluation of Ti and V-based carbide MXene via microwave assisted hydrofluoric acid etching for energy storage†

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
P. E. Lokhande, Udayabhaskar Rednam, Vishal Kadam, Chaitali Jagtap, S. R. Padalkar, Rohini Bhat, T. Boobalan and Bandar Ali Al-Asbahi
{"title":"Synthesis and electrochemical evaluation of Ti and V-based carbide MXene via microwave assisted hydrofluoric acid etching for energy storage†","authors":"P. E. Lokhande, Udayabhaskar Rednam, Vishal Kadam, Chaitali Jagtap, S. R. Padalkar, Rohini Bhat, T. Boobalan and Bandar Ali Al-Asbahi","doi":"10.1039/D5NJ00142K","DOIUrl":null,"url":null,"abstract":"<p >The current study involves the synthesis of bimetallic (Ti,V) carbide MXene through microwave-assisted hydrofluoric acid etching, targeting supercapacitor applications. Crystallographic and morphological analyses of the synthesized compound reveal the formation of layered Ti<small><sub>3</sub></small>V<small><sub>2</sub></small>C<small><sub>3</sub></small>T<small><sub><em>x</em></sub></small> MXene. A shift in the X-ray diffraction peak to a lower two theta angle suggests an increase in interlayer spacing, which is also evident in the morphology. The electrochemical performance of the synthesized material was evaluated, demonstrating a maximum specific capacitance of 465 F g<small><sup>−1</sup></small> at a scan rate of 1 mV s<small><sup>−1</sup></small>, along with outstanding cyclic stability. The kinetics of charge distribution study reveals that diffusion dominates at low scan rates, while capacitive distribution takes precedence at higher scan rates. The practical applicability of the material was confirmed using a fabricated device, which exhibited an energy density of 14.4 W h kg<small><sup>−1</sup></small> and a power density of 1500 W kg<small><sup>−1</sup></small>. Cyclic stability tests over 10 000 cycles showed an excellent 94% capacitance retention, highlighting the potential of the synthesized material for energy. Further-scale practicability was tested by fabricating a pouch cell and testing its glowing performance.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 10","pages":" 4248-4255"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj00142k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The current study involves the synthesis of bimetallic (Ti,V) carbide MXene through microwave-assisted hydrofluoric acid etching, targeting supercapacitor applications. Crystallographic and morphological analyses of the synthesized compound reveal the formation of layered Ti3V2C3Tx MXene. A shift in the X-ray diffraction peak to a lower two theta angle suggests an increase in interlayer spacing, which is also evident in the morphology. The electrochemical performance of the synthesized material was evaluated, demonstrating a maximum specific capacitance of 465 F g−1 at a scan rate of 1 mV s−1, along with outstanding cyclic stability. The kinetics of charge distribution study reveals that diffusion dominates at low scan rates, while capacitive distribution takes precedence at higher scan rates. The practical applicability of the material was confirmed using a fabricated device, which exhibited an energy density of 14.4 W h kg−1 and a power density of 1500 W kg−1. Cyclic stability tests over 10 000 cycles showed an excellent 94% capacitance retention, highlighting the potential of the synthesized material for energy. Further-scale practicability was tested by fabricating a pouch cell and testing its glowing performance.

Abstract Image

微波辅助氢氟酸刻蚀法制备Ti和v基碳化物MXene储能材料及其电化学评价
本研究以超级电容器应用为目标,通过微波辅助氢氟酸蚀刻合成了双金属(Ti,V)碳化物 MXene。合成化合物的晶体学和形态学分析表明形成了层状的 Ti3V2C3Tx MXene。X 射线衍射峰向较低的两个θ角移动,表明层间间距增大,这在形态上也很明显。对合成材料的电化学性能进行了评估,结果表明,在扫描速率为 1 mV s-1 时,其最大比电容为 465 F g-1,同时具有出色的循环稳定性。电荷分布动力学研究表明,在低扫描速率下,扩散占主导地位,而在较高扫描速率下,电容分布占主导地位。该材料的实用性已通过一个制造装置得到证实,其能量密度为 14.4 W h kg-1,功率密度为 1500 W kg-1。超过 10,000 次的循环稳定性测试表明,电容保持率高达 94%,凸显了合成材料在能源方面的潜力。通过制造一个小袋电池并测试其发光性能,对其进一步的实用性进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信