Chris J. Lygouras, Junyi Zhang, Jonah Gautreau, Mathew Pula, Sudarshan Sharma, Shiyuan Gao, Tanya Berry, Thomas Halloran, Peter Orban, Gael Grissonnanche, Juan R. Chamorro, Taketora Mikuri, Dilip K. Bhoi, Maxime A. Siegler, Kenneth J.T. Livi, Yoshiya Uwatoko, Satoru Nakatsuji, B. J. Ramshaw, Yi Li, Graeme M. Luke, Collin L. Broholm and Tyrel M. McQueen
{"title":"Type I and type II superconductivity in a quasi-2D Dirac metal†","authors":"Chris J. Lygouras, Junyi Zhang, Jonah Gautreau, Mathew Pula, Sudarshan Sharma, Shiyuan Gao, Tanya Berry, Thomas Halloran, Peter Orban, Gael Grissonnanche, Juan R. Chamorro, Taketora Mikuri, Dilip K. Bhoi, Maxime A. Siegler, Kenneth J.T. Livi, Yoshiya Uwatoko, Satoru Nakatsuji, B. J. Ramshaw, Yi Li, Graeme M. Luke, Collin L. Broholm and Tyrel M. McQueen","doi":"10.1039/D5MA00022J","DOIUrl":null,"url":null,"abstract":"<p >We explore bulk superconducting phase in single crystals of the Dirac material LaCuSb<small><sub>2</sub></small> prepared by the self-flux method. Magnetization, muon spin relaxation measurements, and density functional theory, show the Dirac nodal line Fermi surfaces give rise to type-II superconductivity for magnetic fields applied along the <strong><em>a</em></strong>-axis, and type-I superconductivity for fields along the <strong><em>c</em></strong>-axis. Both chemical and hydrostatic pressure drastically suppress the superconducting transition. We find multiband superconductivity evidenced by a precipitous drop in the electronic specific heat capacity and high-pressure susceptibility for <em>T</em>* < <em>T</em><small><sub>c</sub></small>/3. Our work demonstrates dirty-limit, weak-coupling multiband superconductivity in LaCuSb<small><sub>2</sub></small>, and highlights the role of Dirac fermions on its anisotropic character.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 5","pages":" 1685-1694"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00022j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00022j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We explore bulk superconducting phase in single crystals of the Dirac material LaCuSb2 prepared by the self-flux method. Magnetization, muon spin relaxation measurements, and density functional theory, show the Dirac nodal line Fermi surfaces give rise to type-II superconductivity for magnetic fields applied along the a-axis, and type-I superconductivity for fields along the c-axis. Both chemical and hydrostatic pressure drastically suppress the superconducting transition. We find multiband superconductivity evidenced by a precipitous drop in the electronic specific heat capacity and high-pressure susceptibility for T* < Tc/3. Our work demonstrates dirty-limit, weak-coupling multiband superconductivity in LaCuSb2, and highlights the role of Dirac fermions on its anisotropic character.