Efficient oxidative coupling of amines to imines under natural sunlight using a benzothiadiazole-based molecular photocatalyst†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ajeet Singh, Bidisa Das and Saumi Ray
{"title":"Efficient oxidative coupling of amines to imines under natural sunlight using a benzothiadiazole-based molecular photocatalyst†","authors":"Ajeet Singh, Bidisa Das and Saumi Ray","doi":"10.1039/D4MA00990H","DOIUrl":null,"url":null,"abstract":"<p >Developing a ‘greener’ avenue for organic synthesis is a key challenge, which must focus on energy efficiency as well as sustainability. Harnessing solar energy to chemical energy is an efficient way to utilize renewable energy resources. Herein, we report a D–A-type (donor–acceptor-type) small organic molecular photocatalyst (SOMP) “Ph-BT-Ph” with benzothiadiazole as the primary photoactive unit for oxidative coupling of amines to synthesize imines. Photocatalyst Ph-BT-Ph is synthesized using a Suzuki–Miyaura coupling reaction and thoroughly characterized by <small><sup>1</sup></small>H-NMR, HRMS, and cyclic voltammetry studies. Photoluminescence and lifetime studies of Ph-BT-Ph show a high excited state reduction potential (−1.37 V <em>vs.</em> Ag/AgCl) and longer lifetime (12.64 ns) which make it suitable for photocatalytic organic transformations. The photocatalytic activity of the catalyst has been evaluated on the direct oxidative coupling reaction of amines to synthesize imines in the presence of natural sunlight and O<small><sub>2</sub></small> as a green oxidant. Catalyst Ph-BT-Ph exhibits excellent photocatalytic performance under optimal reaction conditions by converting &gt;99% amine to imine with &gt;98% selectivity within 2 hours. This high photocatalytic efficiency has been achieved by purging oxygen only for 2 minutes and without any mechanical energy input (no stirring). Quite a moderate amount of catalyst (0.13 mol%) has been employed which results in a high catalytic turnover frequency of 381 h<small><sup>−1</sup></small>. EPR spectroscopy and theoretical studies are performed to understand the reaction mechanism and to determine the active sites of the catalyst. The Ph-BT-Ph catalyst surpasses the photocatalytic efficiencies of many reported metal-free catalysts for oxidative coupling of amines. Such SOMPs, with easily tunable absorption range and well-defined energy-band positions, offer a new class of metal-free and photoactive catalysts for organic synthesis with outstanding performance under greener reaction conditions.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 5","pages":" 1667-1678"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00990h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00990h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing a ‘greener’ avenue for organic synthesis is a key challenge, which must focus on energy efficiency as well as sustainability. Harnessing solar energy to chemical energy is an efficient way to utilize renewable energy resources. Herein, we report a D–A-type (donor–acceptor-type) small organic molecular photocatalyst (SOMP) “Ph-BT-Ph” with benzothiadiazole as the primary photoactive unit for oxidative coupling of amines to synthesize imines. Photocatalyst Ph-BT-Ph is synthesized using a Suzuki–Miyaura coupling reaction and thoroughly characterized by 1H-NMR, HRMS, and cyclic voltammetry studies. Photoluminescence and lifetime studies of Ph-BT-Ph show a high excited state reduction potential (−1.37 V vs. Ag/AgCl) and longer lifetime (12.64 ns) which make it suitable for photocatalytic organic transformations. The photocatalytic activity of the catalyst has been evaluated on the direct oxidative coupling reaction of amines to synthesize imines in the presence of natural sunlight and O2 as a green oxidant. Catalyst Ph-BT-Ph exhibits excellent photocatalytic performance under optimal reaction conditions by converting >99% amine to imine with >98% selectivity within 2 hours. This high photocatalytic efficiency has been achieved by purging oxygen only for 2 minutes and without any mechanical energy input (no stirring). Quite a moderate amount of catalyst (0.13 mol%) has been employed which results in a high catalytic turnover frequency of 381 h−1. EPR spectroscopy and theoretical studies are performed to understand the reaction mechanism and to determine the active sites of the catalyst. The Ph-BT-Ph catalyst surpasses the photocatalytic efficiencies of many reported metal-free catalysts for oxidative coupling of amines. Such SOMPs, with easily tunable absorption range and well-defined energy-band positions, offer a new class of metal-free and photoactive catalysts for organic synthesis with outstanding performance under greener reaction conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信