Ultra-Compact Silicon-Based 1×8 Power Splitter Based on Digital Metamaterials

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiazhu Duan;Cangli Liu;Jiancheng Zeng;Yongquan Luo;Li Liu;Xiangjie Zhao;Dayong Zhang
{"title":"Ultra-Compact Silicon-Based 1×8 Power Splitter Based on Digital Metamaterials","authors":"Jiazhu Duan;Cangli Liu;Jiancheng Zeng;Yongquan Luo;Li Liu;Xiangjie Zhao;Dayong Zhang","doi":"10.1109/LPT.2025.3540921","DOIUrl":null,"url":null,"abstract":"We present the design and experimental verification of an ultra-compact <inline-formula> <tex-math>$1\\times 8$ </tex-math></inline-formula> power splitter utilizing digital metamaterials. Our splitter leverages the direct binary search algorithm to optimize the pixelated design space, ensuring symmetric and efficient power distribution across the eight output waveguides. This design achieves a notably small footprint, low insertion loss, and excellent uniformity performance at the communication wavelength of 1550 nm. To validate our approach, we fabricated a <inline-formula> <tex-math>$1\\times 8$ </tex-math></inline-formula> power splitter on a silicon-on-insulator (SOI) platform, featuring ultra-compact length and space of just <inline-formula> <tex-math>$5.33~\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$56.12~\\mu $ </tex-math></inline-formula>m2 respectively. This size represents a reduction of 1-2 orders of magnitude compared to previously reported values. Experimental results reveal an impressive insertion loss of 0.66 dB and a good uniformity of 0.42 dB at the center wavelength. Furthermore, the total loss remains below 1 dB across a wavelength range spanning from 1542.2 nm to 1553.5 nm. When compared to existing solutions, our designed splitter demonstrates superior performance in terms of size, insertion loss and uniformity. These attributes make this high-performance <inline-formula> <tex-math>$1\\times 8$ </tex-math></inline-formula> power splitter a promising candidate for applications in large-scale on-chip optical networks and optical phased arrays.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 6","pages":"317-320"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10879595/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present the design and experimental verification of an ultra-compact $1\times 8$ power splitter utilizing digital metamaterials. Our splitter leverages the direct binary search algorithm to optimize the pixelated design space, ensuring symmetric and efficient power distribution across the eight output waveguides. This design achieves a notably small footprint, low insertion loss, and excellent uniformity performance at the communication wavelength of 1550 nm. To validate our approach, we fabricated a $1\times 8$ power splitter on a silicon-on-insulator (SOI) platform, featuring ultra-compact length and space of just $5.33~\mu $ m and $56.12~\mu $ m2 respectively. This size represents a reduction of 1-2 orders of magnitude compared to previously reported values. Experimental results reveal an impressive insertion loss of 0.66 dB and a good uniformity of 0.42 dB at the center wavelength. Furthermore, the total loss remains below 1 dB across a wavelength range spanning from 1542.2 nm to 1553.5 nm. When compared to existing solutions, our designed splitter demonstrates superior performance in terms of size, insertion loss and uniformity. These attributes make this high-performance $1\times 8$ power splitter a promising candidate for applications in large-scale on-chip optical networks and optical phased arrays.
基于数字超材料的超紧凑硅基1×8功率分配器
我们提出了一种利用数字超材料的超紧凑1\ × 8$功率分配器的设计和实验验证。我们的分配器利用直接二进制搜索算法来优化像素化设计空间,确保在八个输出波导上对称和有效的功率分配。该设计在1550 nm的通信波长上实现了占地面积小、插入损耗低、均匀性好等特点。为了验证我们的方法,我们在绝缘体上硅(SOI)平台上制造了一个价值1\ × 8$的功率分配器,其长度和空间分别仅为5.33~\mu $ m和56.12~\mu $ m2。与以前报告的数值相比,这一数值减少了1-2个数量级。实验结果表明,插入损耗为0.66 dB,中心波长均匀性为0.42 dB。此外,在1542.2 nm到1553.5 nm的波长范围内,总损耗保持在1 dB以下。与现有的解决方案相比,我们设计的分离器在尺寸、插入损耗和均匀性方面表现出卓越的性能。这些特性使这款高性能1\ × 8$功率分配器成为大规模片上光网络和光相控阵应用的有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信