Multimodal Freezing of Gait Detection: Analyzing the Benefits and Limitations of Physiological Data

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Po-Kai Yang;Benjamin Filtjens;Pieter Ginis;Maaike Goris;Alice Nieuwboer;Moran Gilat;Peter Slaets;Bart Vanrumste
{"title":"Multimodal Freezing of Gait Detection: Analyzing the Benefits and Limitations of Physiological Data","authors":"Po-Kai Yang;Benjamin Filtjens;Pieter Ginis;Maaike Goris;Alice Nieuwboer;Moran Gilat;Peter Slaets;Bart Vanrumste","doi":"10.1109/TNSRE.2025.3545110","DOIUrl":null,"url":null,"abstract":"Freezing of gait (FOG) is a debilitating symptom of Parkinson’s disease (PD), characterized by an absence or reduction in forward movement of the legs despite the intention to walk. Detecting FOG during free-living conditions presents significant challenges, particularly when using only inertial measurement unit (IMU) data, as it must be distinguished from voluntary stopping events that also feature reduced forward movement. Influences from stress and anxiety, measurable through galvanic skin response (GSR) and electrocardiogram (ECG), may assist in distinguishing FOG from normal gait and stopping. However, no study has investigated the fusion of IMU, GSR, and ECG for FOG detection. Therefore, this study introduced two methods: a two-step approach that first identified reduced forward movement segments using a Transformer-based model with IMU data, followed by an XGBoost model classifying these segments as FOG or stopping using IMU, GSR, and ECG features; and an end-to-end approach employing a multi-stage temporal convolutional network to directly classify FOG and stopping segments from IMU, GSR, and ECG data. Results showed that the two-step approach with all data modalities achieved an average F1 score of 0.728 and F1@50 of 0.725, while the end-to-end approach scored 0.771 and 0.759, respectively. However, no significant difference was found compared to using only IMU data in both approaches (p-values: 0.466 to 0.887). In conclusion, adding physiological data did not provide a statistically significant benefit in distinguishing between FOG and stopping. The limitations may be specific to GSR and ECG data, and may not generalize to other physiological modalities.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"956-965"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902623","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10902623/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Freezing of gait (FOG) is a debilitating symptom of Parkinson’s disease (PD), characterized by an absence or reduction in forward movement of the legs despite the intention to walk. Detecting FOG during free-living conditions presents significant challenges, particularly when using only inertial measurement unit (IMU) data, as it must be distinguished from voluntary stopping events that also feature reduced forward movement. Influences from stress and anxiety, measurable through galvanic skin response (GSR) and electrocardiogram (ECG), may assist in distinguishing FOG from normal gait and stopping. However, no study has investigated the fusion of IMU, GSR, and ECG for FOG detection. Therefore, this study introduced two methods: a two-step approach that first identified reduced forward movement segments using a Transformer-based model with IMU data, followed by an XGBoost model classifying these segments as FOG or stopping using IMU, GSR, and ECG features; and an end-to-end approach employing a multi-stage temporal convolutional network to directly classify FOG and stopping segments from IMU, GSR, and ECG data. Results showed that the two-step approach with all data modalities achieved an average F1 score of 0.728 and F1@50 of 0.725, while the end-to-end approach scored 0.771 and 0.759, respectively. However, no significant difference was found compared to using only IMU data in both approaches (p-values: 0.466 to 0.887). In conclusion, adding physiological data did not provide a statistically significant benefit in distinguishing between FOG and stopping. The limitations may be specific to GSR and ECG data, and may not generalize to other physiological modalities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信