A novel Ni–Mo–W–V martensitic steel for hot working dies: Improved elevated–temperature mechanical properties and wear resistance via thermally stable MC nanoprecipitates

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Junyu Chen , Pengfei Jin , Shujing Wang , Chenhui Zhu , Minheng Xu , ZhiQiang Jia , Xiao Liu , Chao Zhao , Cheng Zhang , Jinfeng Huang
{"title":"A novel Ni–Mo–W–V martensitic steel for hot working dies: Improved elevated–temperature mechanical properties and wear resistance via thermally stable MC nanoprecipitates","authors":"Junyu Chen ,&nbsp;Pengfei Jin ,&nbsp;Shujing Wang ,&nbsp;Chenhui Zhu ,&nbsp;Minheng Xu ,&nbsp;ZhiQiang Jia ,&nbsp;Xiao Liu ,&nbsp;Chao Zhao ,&nbsp;Cheng Zhang ,&nbsp;Jinfeng Huang","doi":"10.1016/j.triboint.2025.110618","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous advancement of industrial technologies, there is an increasing demand for hot working dies that can withstand higher operational temperatures and more severe loading conditions. Consequently, hot working die steels must exhibit exceptional elevated temperature strength to improve wear resistance. In this study, a martensitic low–alloy 23CrNi3Mo2WV (PG) steel is developed by incorporating Mo, W, and V to promote the precipitation of MC nanoscale carbides. Experimental results demonstrate that the ultimate tensile strength of PG reaches 543 ± 15 MPa at 700 °C, which is 322 ± 20 MPa higher than that of 5CrNiMo steel. Furthermore, the wear rate of PG is 4.39 ± 0.24 × 10<sup>–7</sup> mm³/N/m after a wear test at 500 °C, significantly lower than that of 5CrNiMo. Microstructural analysis further reveals the precipitation of needle–like MC nanocarbides in the PG steel after tempering, which exhibits higher thermal stability relative to M<sub>3</sub>C carbides in the 5CrNiMo steel. The MC carbides follow a Baker–Nutting (B–N) orientation relationship (OR) of <span><math><mrow><msub><mrow><mo>(</mo><mn>100</mn><mo>)</mo></mrow><mrow><mtext>MC</mtext></mrow></msub><msub><mrow><mo>/</mo><mo>/</mo><mo>(</mo><mn>100</mn><mo>)</mo></mrow><mrow><mtext>α</mtext><mo>′</mo></mrow></msub></mrow></math></span> with the martensitic matrix, and this B–N OR is remained following the wear test at 500 °C. This stable orientation relationship in PG steel contributes to the higher strength and lower wear rate compared to 5CrNiMo steel. Therefore, PG steel is a promising material for hot working die applications, offering an extended service life at elevated temperatures.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"207 ","pages":"Article 110618"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25001136","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous advancement of industrial technologies, there is an increasing demand for hot working dies that can withstand higher operational temperatures and more severe loading conditions. Consequently, hot working die steels must exhibit exceptional elevated temperature strength to improve wear resistance. In this study, a martensitic low–alloy 23CrNi3Mo2WV (PG) steel is developed by incorporating Mo, W, and V to promote the precipitation of MC nanoscale carbides. Experimental results demonstrate that the ultimate tensile strength of PG reaches 543 ± 15 MPa at 700 °C, which is 322 ± 20 MPa higher than that of 5CrNiMo steel. Furthermore, the wear rate of PG is 4.39 ± 0.24 × 10–7 mm³/N/m after a wear test at 500 °C, significantly lower than that of 5CrNiMo. Microstructural analysis further reveals the precipitation of needle–like MC nanocarbides in the PG steel after tempering, which exhibits higher thermal stability relative to M3C carbides in the 5CrNiMo steel. The MC carbides follow a Baker–Nutting (B–N) orientation relationship (OR) of (100)MC//(100)α with the martensitic matrix, and this B–N OR is remained following the wear test at 500 °C. This stable orientation relationship in PG steel contributes to the higher strength and lower wear rate compared to 5CrNiMo steel. Therefore, PG steel is a promising material for hot working die applications, offering an extended service life at elevated temperatures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信