{"title":"A large minimal blocker for 123-avoiding permutations","authors":"Yaroslav Shitov","doi":"10.1016/j.disc.2025.114463","DOIUrl":null,"url":null,"abstract":"<div><div>A set <span><math><mi>B</mi><mo>⊆</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo><mo>×</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span> is a <em>blocker of</em> a subset <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> if every permutation <span><math><mi>σ</mi><mo>∈</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> allows an index <em>i</em> with <span><math><mo>(</mo><mi>i</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>B</mi></math></span>. Bennett, Brualdi and Cao conjectured that <span><math><mo>⌈</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌉</mo><mo>⋅</mo><mo>⌊</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> is an upper bound for the sizes of the inclusion minimal blockers of the family of 123-<em>avoiding</em> permutations, which are those <span><math><mi>σ</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for which <span><math><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> has no increasing subsequence of the length three. We show that<span><span><span><math><mi>B</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr><mtr><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mn>0</mn><mspace></mspace></mtd><mtd><mo>⁎</mo></mtd></mtr></mtable><mo>)</mo></mrow></math></span></span></span> is a counterexample to the conjecture, where the ⁎'s denote the positions in the blocker.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114463"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000718","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A set is a blocker of a subset of the symmetric group if every permutation allows an index i with . Bennett, Brualdi and Cao conjectured that is an upper bound for the sizes of the inclusion minimal blockers of the family of 123-avoiding permutations, which are those for which has no increasing subsequence of the length three. We show that is a counterexample to the conjecture, where the ⁎'s denote the positions in the blocker.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.