{"title":"The Ramsey numbers for certain large trees of order n with maximum degree at most n − 6 versus the wheel of order nine","authors":"Thomas Britz , Zhi Yee Chng , Kok Bin Wong","doi":"10.1016/j.disc.2025.114461","DOIUrl":null,"url":null,"abstract":"<div><div>For a fixed positive integer <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>, the Ramsey numbers <span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>8</mn></mrow></msub><mo>)</mo></math></span> are determined for the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of sufficiently large order <em>n</em> and maximum degree <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. This result provides a partial proof for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and Baskoro, that <span><math><mi>R</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></math></span> for each tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of order <span><math><mi>n</mi><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span> with <span><math><mi>Δ</mi><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>+</mo><mn>2</mn></math></span> when <span><math><mi>m</mi><mo>≥</mo><mn>4</mn></math></span> is even, for the case when <span><math><mi>m</mi><mo>=</mo><mn>8</mn></math></span> and <em>n</em> is sufficiently large.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114461"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2500069X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a fixed positive integer , the Ramsey numbers are determined for the tree of sufficiently large order n and maximum degree . This result provides a partial proof for the conjecture, due to Chen, Zhang and Zhang and to Hafidh and Baskoro, that for each tree of order with when is even, for the case when and n is sufficiently large.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.