{"title":"Nonlocal models in biology and life sciences: Sources, developments, and applications","authors":"Swadesh Pal , Roderick Melnik","doi":"10.1016/j.plrev.2025.02.005","DOIUrl":null,"url":null,"abstract":"<div><div>Mathematical modeling is one of the fundamental techniques for understanding biophysical mechanisms in developmental biology. It helps researchers to analyze complex physiological processes and connect like a bridge between theoretical and experimental observations. Various groups of mathematical models have been studied to analyze these processes, and the nonlocal models are one of them. Nonlocality is important in realistic mathematical models of physical and biological systems when local models fail to capture the essential dynamics and interactions that occur over a range of distances (e.g., cell-cell, cell–tissue adhesions, neural networks, the spread of diseases, intra-specific competition, nanobeams, etc.). This review illustrates different nonlocal mathematical models applied to biology and life sciences. The major focus has been given to sources, developments, and applications of such models. Among other things, a systematic discussion has been provided for the conditions of pattern formations in biological systems of population dynamics. Special attention has also been given to nonlocal interactions on networks, network coupling and integration, including brain dynamics models that provide an important tool to understand neurodegenerative diseases better. In addition, we have discussed nonlocal modeling approaches for cancer stem cells and tumor cells that are widely applied in the cell migration processes, growth, and avascular tumors in any organ. Furthermore, the discussed nonlocal continuum models can go sufficiently smaller scales, including nanotechnology, where classical local models often fail to capture the complexities of nanoscale interactions, applied to build biosensors to sense biomaterial and its concentration. Piezoelectric and other smart materials are among them, and these devices are becoming increasingly important in the digital and physical world that is intrinsically interconnected with biological systems. Additionally, we have reviewed a nonlocal theory of peridynamics, which deals with continuous and discrete media and applies to model the relationship between fracture and healing in cortical bone, tissue growth and shrinkage, and other areas increasingly important in biomedical and bioengineering applications. Finally, we provided a comprehensive summary of emerging trends and highlighted future directions in this rapidly expanding field.</div></div>","PeriodicalId":403,"journal":{"name":"Physics of Life Reviews","volume":"53 ","pages":"Pages 24-75"},"PeriodicalIF":13.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Life Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571064525000235","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mathematical modeling is one of the fundamental techniques for understanding biophysical mechanisms in developmental biology. It helps researchers to analyze complex physiological processes and connect like a bridge between theoretical and experimental observations. Various groups of mathematical models have been studied to analyze these processes, and the nonlocal models are one of them. Nonlocality is important in realistic mathematical models of physical and biological systems when local models fail to capture the essential dynamics and interactions that occur over a range of distances (e.g., cell-cell, cell–tissue adhesions, neural networks, the spread of diseases, intra-specific competition, nanobeams, etc.). This review illustrates different nonlocal mathematical models applied to biology and life sciences. The major focus has been given to sources, developments, and applications of such models. Among other things, a systematic discussion has been provided for the conditions of pattern formations in biological systems of population dynamics. Special attention has also been given to nonlocal interactions on networks, network coupling and integration, including brain dynamics models that provide an important tool to understand neurodegenerative diseases better. In addition, we have discussed nonlocal modeling approaches for cancer stem cells and tumor cells that are widely applied in the cell migration processes, growth, and avascular tumors in any organ. Furthermore, the discussed nonlocal continuum models can go sufficiently smaller scales, including nanotechnology, where classical local models often fail to capture the complexities of nanoscale interactions, applied to build biosensors to sense biomaterial and its concentration. Piezoelectric and other smart materials are among them, and these devices are becoming increasingly important in the digital and physical world that is intrinsically interconnected with biological systems. Additionally, we have reviewed a nonlocal theory of peridynamics, which deals with continuous and discrete media and applies to model the relationship between fracture and healing in cortical bone, tissue growth and shrinkage, and other areas increasingly important in biomedical and bioengineering applications. Finally, we provided a comprehensive summary of emerging trends and highlighted future directions in this rapidly expanding field.
期刊介绍:
Physics of Life Reviews, published quarterly, is an international journal dedicated to review articles on the physics of living systems, complex phenomena in biological systems, and related fields including artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Serving as a unifying force across disciplines, the journal explores living systems comprehensively—from molecules to populations, genetics to mind, and artificial systems modeling these phenomena. Inviting reviews from actively engaged researchers, the journal seeks broad, critical, and accessible contributions that address recent progress and sometimes controversial accounts in the field.