Specific activation of cGAS-STING pathway by manganese-doped bioactive glasses for boosting systemic tumor immunotherapy

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhaolin Yang , Jiale Zhou , Xinrui Wu, Sian Zhou, Wei Xue, Jiahua Pan, Yonghui Chen, Xiaorong Wu
{"title":"Specific activation of cGAS-STING pathway by manganese-doped bioactive glasses for boosting systemic tumor immunotherapy","authors":"Zhaolin Yang ,&nbsp;Jiale Zhou ,&nbsp;Xinrui Wu,&nbsp;Sian Zhou,&nbsp;Wei Xue,&nbsp;Jiahua Pan,&nbsp;Yonghui Chen,&nbsp;Xiaorong Wu","doi":"10.1016/j.matdes.2025.113764","DOIUrl":null,"url":null,"abstract":"<div><div>The recurrence and metastasis of renal cell carcinoma present significant challenges in clinical settings, necessitating the urgent development of strategies to enhance the efficacy of kidney cancer treatments. In this study, we designed and developed a manganese-doped bioactive glass-based (Mn-MBG) core, creating a Mn-rich nanotherapeutic platform named MMPI. This platform was further modified by encapsulation with polydopamine (PDA) and successfully loaded with the photosensitizer indocyanine green (ICG) through π-π stacking interactions, enabling photothermal therapy (PTT) and photodynamic therapy (PDT). <em>In vitro</em> experiments demonstrated that under near-infrared (NIR) irradiation, MMPI could generate a moderate photothermal effect, causing damage to tumor cells. At the same time, the photothermal effect enhanced Mn<sup>2+</sup> and ICG release and increased reactive oxygen species (ROS) production, intensifying damage to heat-sensitive tumor cells and aiding tumor elimination. <em>In vivo</em> experiments showed that MMPI can counteract the tumor’s immunosuppressive environment by activating the cGAS-STING pathway, boosting local innate immune cell recruitment, dendritic cell maturation, and T cell-mediated adaptive antitumor responses. In conclusion, this study elucidates the concept of a manganese-based non-invasive tumor immunotherapy model, establishing a paradigm for immunotherapeutic approaches in renal cell carcinoma.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"252 ","pages":"Article 113764"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525001844","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The recurrence and metastasis of renal cell carcinoma present significant challenges in clinical settings, necessitating the urgent development of strategies to enhance the efficacy of kidney cancer treatments. In this study, we designed and developed a manganese-doped bioactive glass-based (Mn-MBG) core, creating a Mn-rich nanotherapeutic platform named MMPI. This platform was further modified by encapsulation with polydopamine (PDA) and successfully loaded with the photosensitizer indocyanine green (ICG) through π-π stacking interactions, enabling photothermal therapy (PTT) and photodynamic therapy (PDT). In vitro experiments demonstrated that under near-infrared (NIR) irradiation, MMPI could generate a moderate photothermal effect, causing damage to tumor cells. At the same time, the photothermal effect enhanced Mn2+ and ICG release and increased reactive oxygen species (ROS) production, intensifying damage to heat-sensitive tumor cells and aiding tumor elimination. In vivo experiments showed that MMPI can counteract the tumor’s immunosuppressive environment by activating the cGAS-STING pathway, boosting local innate immune cell recruitment, dendritic cell maturation, and T cell-mediated adaptive antitumor responses. In conclusion, this study elucidates the concept of a manganese-based non-invasive tumor immunotherapy model, establishing a paradigm for immunotherapeutic approaches in renal cell carcinoma.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信