{"title":"Pontryagin maximum principle for the deterministic mean field type optimal control problem via the Lagrangian approach","authors":"Yurii Averboukh, Dmitry Khlopin","doi":"10.1016/j.jde.2025.02.076","DOIUrl":null,"url":null,"abstract":"<div><div>We study necessary optimality conditions for the deterministic mean field type free-endpoint optimal control problem. Our study relies on the Lagrangian approach that treats the mean field type control system as a crowd of infinitely many agents who are labeled by elements of some probability space. First, we derive the Pontryagin maximum principle in the Lagrangian form. Furthermore, we consider the Kantorovich and Eulerian formalizations which describe mean field type control systems via distributions on the set of trajectories and nonlocal continuity equation respectively. We prove that local minimizers in the Kantorovich or Eulerian formulations determine local minimizers within the Lagrangian approach. Using this, we deduce the Pontryagin maximum principle in the Kantorovich and Eulerian forms. To illustrate the general theory, we examine a model system of mean field type linear quadratic regulator. We show that the optimal strategy in this case is determined by a linear feedback.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"430 ","pages":"Article 113205"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625002013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study necessary optimality conditions for the deterministic mean field type free-endpoint optimal control problem. Our study relies on the Lagrangian approach that treats the mean field type control system as a crowd of infinitely many agents who are labeled by elements of some probability space. First, we derive the Pontryagin maximum principle in the Lagrangian form. Furthermore, we consider the Kantorovich and Eulerian formalizations which describe mean field type control systems via distributions on the set of trajectories and nonlocal continuity equation respectively. We prove that local minimizers in the Kantorovich or Eulerian formulations determine local minimizers within the Lagrangian approach. Using this, we deduce the Pontryagin maximum principle in the Kantorovich and Eulerian forms. To illustrate the general theory, we examine a model system of mean field type linear quadratic regulator. We show that the optimal strategy in this case is determined by a linear feedback.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics