Regularity of the free boundary for a semilinear vector-valued minimization problem

IF 2.4 2区 数学 Q1 MATHEMATICS
Lili Du , Yi Zhou
{"title":"Regularity of the free boundary for a semilinear vector-valued minimization problem","authors":"Lili Du ,&nbsp;Yi Zhou","doi":"10.1016/j.jde.2025.02.068","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the following vector-valued minimization problem<span><span><span><math><mi>min</mi><mo>⁡</mo><mrow><mo>{</mo><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>F</mi><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi><mo>:</mo><mspace></mspace><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>D</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>u</mi><mo>=</mo><mi>g</mi><mspace></mspace><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>D</mi><mo>}</mo></mrow></math></span></span></span> where <span><math><mi>u</mi><mo>:</mo><mi>D</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> (<span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>) is a vector-valued function, <span><math><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (<span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>) is a bounded Lipschitz domain, <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>D</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> is a given vector-valued function and <span><math><mi>F</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mi>R</mi></math></span> is a given function. This minimization problem corresponds to the following semilinear elliptic system<span><span><span><math><mi>Δ</mi><mi>u</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>)</mo><mfrac><mrow><mi>u</mi></mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mfrac><msub><mrow><mi>χ</mi></mrow><mrow><mo>{</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>&gt;</mo><mn>0</mn><mo>}</mo></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> denotes the characteristic function of the set <em>A</em>. The linear case that <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≡</mo><mn>2</mn></math></span> was studied in the previous elegant work by Andersson et al. (2015) <span><span>[3]</span></span>, in which an epiperimetric inequality played a crucial role to indicate an energy decay estimate and the uniqueness of blow-up limit. However, this epiperimetric inequality cannot be directly applied to our case due to the more general non-degenerate and non-homogeneous term <em>F</em> which leads to Weiss's energy functional does not have scaling properties. Motivated by the linear case, when <em>F</em> satisfies some assumptions, we establish successfully a new epiperimetric inequality, it can deal with term which is not scaling invariant in Weiss's energy functional. As an application of this new epiperimetric inequality, we conclude that the free boundary <span><math><mi>D</mi><mo>∩</mo><mo>∂</mo><mo>{</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>&gt;</mo><mn>0</mn><mo>}</mo></math></span> is a locally <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msup></math></span> surface near the regular points for some <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"430 ","pages":"Article 113197"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001937","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the following vector-valued minimization problemmin{D(|u|2+F(|u|))dx:uW1,2(D;Rm)andu=gonD} where u:DRm (m1) is a vector-valued function, DRn (n2) is a bounded Lipschitz domain, gW1,2(D;Rm) is a given vector-valued function and F:[0,)R is a given function. This minimization problem corresponds to the following semilinear elliptic systemΔu=12F(|u|)u|u|χ{|u|>0}, where χA denotes the characteristic function of the set A. The linear case that F2 was studied in the previous elegant work by Andersson et al. (2015) [3], in which an epiperimetric inequality played a crucial role to indicate an energy decay estimate and the uniqueness of blow-up limit. However, this epiperimetric inequality cannot be directly applied to our case due to the more general non-degenerate and non-homogeneous term F which leads to Weiss's energy functional does not have scaling properties. Motivated by the linear case, when F satisfies some assumptions, we establish successfully a new epiperimetric inequality, it can deal with term which is not scaling invariant in Weiss's energy functional. As an application of this new epiperimetric inequality, we conclude that the free boundary D{|u|>0} is a locally C1,β surface near the regular points for some β(0,1).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信