{"title":"Regularity of the free boundary for a semilinear vector-valued minimization problem","authors":"Lili Du , Yi Zhou","doi":"10.1016/j.jde.2025.02.068","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the following vector-valued minimization problem<span><span><span><math><mi>min</mi><mo></mo><mrow><mo>{</mo><munder><mo>∫</mo><mrow><mi>D</mi></mrow></munder><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>F</mi><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi><mo>:</mo><mspace></mspace><mspace></mspace><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>D</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mspace></mspace><mtext>and</mtext><mspace></mspace><mi>u</mi><mo>=</mo><mi>g</mi><mspace></mspace><mtext>on</mtext><mspace></mspace><mo>∂</mo><mi>D</mi><mo>}</mo></mrow></math></span></span></span> where <span><math><mi>u</mi><mo>:</mo><mi>D</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> (<span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>) is a vector-valued function, <span><math><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (<span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>) is a bounded Lipschitz domain, <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><mi>D</mi><mo>;</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></math></span> is a given vector-valued function and <span><math><mi>F</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mi>R</mi></math></span> is a given function. This minimization problem corresponds to the following semilinear elliptic system<span><span><span><math><mi>Δ</mi><mi>u</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>)</mo><mfrac><mrow><mi>u</mi></mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mfrac><msub><mrow><mi>χ</mi></mrow><mrow><mo>{</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>></mo><mn>0</mn><mo>}</mo></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> denotes the characteristic function of the set <em>A</em>. The linear case that <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≡</mo><mn>2</mn></math></span> was studied in the previous elegant work by Andersson et al. (2015) <span><span>[3]</span></span>, in which an epiperimetric inequality played a crucial role to indicate an energy decay estimate and the uniqueness of blow-up limit. However, this epiperimetric inequality cannot be directly applied to our case due to the more general non-degenerate and non-homogeneous term <em>F</em> which leads to Weiss's energy functional does not have scaling properties. Motivated by the linear case, when <em>F</em> satisfies some assumptions, we establish successfully a new epiperimetric inequality, it can deal with term which is not scaling invariant in Weiss's energy functional. As an application of this new epiperimetric inequality, we conclude that the free boundary <span><math><mi>D</mi><mo>∩</mo><mo>∂</mo><mo>{</mo><mo>|</mo><mi>u</mi><mo>|</mo><mo>></mo><mn>0</mn><mo>}</mo></math></span> is a locally <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msup></math></span> surface near the regular points for some <span><math><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"430 ","pages":"Article 113197"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001937","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the following vector-valued minimization problem where () is a vector-valued function, () is a bounded Lipschitz domain, is a given vector-valued function and is a given function. This minimization problem corresponds to the following semilinear elliptic system where denotes the characteristic function of the set A. The linear case that was studied in the previous elegant work by Andersson et al. (2015) [3], in which an epiperimetric inequality played a crucial role to indicate an energy decay estimate and the uniqueness of blow-up limit. However, this epiperimetric inequality cannot be directly applied to our case due to the more general non-degenerate and non-homogeneous term F which leads to Weiss's energy functional does not have scaling properties. Motivated by the linear case, when F satisfies some assumptions, we establish successfully a new epiperimetric inequality, it can deal with term which is not scaling invariant in Weiss's energy functional. As an application of this new epiperimetric inequality, we conclude that the free boundary is a locally surface near the regular points for some .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics