{"title":"Liouville theorem for Lane-Emden equation of Baouendi-Grushin operators","authors":"Hua Chen, Xin Liao","doi":"10.1016/j.jde.2025.02.072","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish a Liouville theorem for solutions to the Lane-Emden equation involving Baouendi-Grushin operator:<span><span><span><math><mo>−</mo><mo>(</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>+</mo><msup><mrow><mo>(</mo><mi>α</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn><mi>α</mi></mrow></msup><msub><mrow><mi>Δ</mi></mrow><mrow><mi>y</mi></mrow></msub><mi>u</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>,</mo></math></span></span></span> where <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>m</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, and <span><math><mi>α</mi><mo>≥</mo><mn>0</mn></math></span>. We focus on solutions that are stable outside a compact set. Specifically, we prove that for <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span>, when <em>p</em> is smaller than the Joseph–Lundgren exponent and differs from the Sobolev exponent, <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span> is the unique <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> solution stable outside a compact set. This work extends the results obtained by Farina (J. Math. Pures Appl., <strong>87</strong> (5) (2007), 537–561).</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"430 ","pages":"Article 113201"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001974","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish a Liouville theorem for solutions to the Lane-Emden equation involving Baouendi-Grushin operator: where with , , and . We focus on solutions that are stable outside a compact set. Specifically, we prove that for , when p is smaller than the Joseph–Lundgren exponent and differs from the Sobolev exponent, is the unique solution stable outside a compact set. This work extends the results obtained by Farina (J. Math. Pures Appl., 87 (5) (2007), 537–561).
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics