Synthesis of novel N-phosphorylated iminophosphoranes and their application in flame-retardant epoxy resin

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Chenpeng Ji , Liping Jin , Shuhan Ye , Lei Liu , Yubo Chen , Lingxing He , Wei Wang , Kun Qian , Wenwen Guo
{"title":"Synthesis of novel N-phosphorylated iminophosphoranes and their application in flame-retardant epoxy resin","authors":"Chenpeng Ji ,&nbsp;Liping Jin ,&nbsp;Shuhan Ye ,&nbsp;Lei Liu ,&nbsp;Yubo Chen ,&nbsp;Lingxing He ,&nbsp;Wei Wang ,&nbsp;Kun Qian ,&nbsp;Wenwen Guo","doi":"10.1016/j.jtice.2025.106064","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Epoxy resin, one of the most commonly used thermosetting materials, suffers from the more obvious defect of being flammable.</div></div><div><h3>Methods</h3><div>In this work, three new types of N-phosphorylated iminophosphorane based on phosphorous compounds containing different phosphorus oxidation states (DPP-N-TMP, DOPO-N-TMP and DPPO-N-TMP) was successfully synthesized via the one-pot “Atherton-Todd and Staudinger reactions” approachs, and then introduced separately into EP matrix.</div></div><div><h3>Significant findings</h3><div>TGA results indicated that the incorporation of these three N-phosphorylated iminophosphoranes can prominently enhance the thermal stability at high temperature. Especially the char yield of EP/2.5 %DPP-N-TMP, EP/5 %DPP-N-TMP and EP/10 %DPP-N-TMP was gradually enhanced from 7.6 % of pure EP to 17.6 %, 22.7 % and 25.2 %, respectively. Notably, EP/10 %DPP-N-TMP possessed a relatively high LOI value of 29.0 % and passed V0 rating in UL-94 test, while EP/10 %DOPO-N-TMP (LOI∼27.5 %) and EP/10 %DPPO-N-TMP (LOI∼24.0 %) only displayed V1 and NR rating respectively. As for cone test results, EP/10 %DPP-N-TMP exhibited the most significant reduction of 63.8 % in PHRR and its THR was also remarkably reduced by 54.5 % compared to the neat EP. The analysis implied that EP/10 %DPP-N-TMP possessed the best flame retardant performance due to its higher phosphorus oxidation state, conducive to forming char layers, which improved fire retardancy.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"171 ","pages":"Article 106064"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025001178","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Epoxy resin, one of the most commonly used thermosetting materials, suffers from the more obvious defect of being flammable.

Methods

In this work, three new types of N-phosphorylated iminophosphorane based on phosphorous compounds containing different phosphorus oxidation states (DPP-N-TMP, DOPO-N-TMP and DPPO-N-TMP) was successfully synthesized via the one-pot “Atherton-Todd and Staudinger reactions” approachs, and then introduced separately into EP matrix.

Significant findings

TGA results indicated that the incorporation of these three N-phosphorylated iminophosphoranes can prominently enhance the thermal stability at high temperature. Especially the char yield of EP/2.5 %DPP-N-TMP, EP/5 %DPP-N-TMP and EP/10 %DPP-N-TMP was gradually enhanced from 7.6 % of pure EP to 17.6 %, 22.7 % and 25.2 %, respectively. Notably, EP/10 %DPP-N-TMP possessed a relatively high LOI value of 29.0 % and passed V0 rating in UL-94 test, while EP/10 %DOPO-N-TMP (LOI∼27.5 %) and EP/10 %DPPO-N-TMP (LOI∼24.0 %) only displayed V1 and NR rating respectively. As for cone test results, EP/10 %DPP-N-TMP exhibited the most significant reduction of 63.8 % in PHRR and its THR was also remarkably reduced by 54.5 % compared to the neat EP. The analysis implied that EP/10 %DPP-N-TMP possessed the best flame retardant performance due to its higher phosphorus oxidation state, conducive to forming char layers, which improved fire retardancy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信