Sonochemically synthesized copper chelate from expired streptomycin sulfate as a sustainable catalyst for green synthesis of 1,4-disubstituted triazoles in aqueous medium
{"title":"Sonochemically synthesized copper chelate from expired streptomycin sulfate as a sustainable catalyst for green synthesis of 1,4-disubstituted triazoles in aqueous medium","authors":"Neetu Mev , Yachana Jain , Lalita Yadav , Priya Sharma , Madhu Agarwal , Ragini Gupta","doi":"10.1016/j.tet.2025.134564","DOIUrl":null,"url":null,"abstract":"<div><div>This research work introduces a pioneering strategy for harnessing the potential of expired streptomycin sulfate as its copper chelate to catalyze the synthesis of biologically important 1,4-disubstituted-1,2,3-triazoles efficiently. The efficacy of this catalyst is showcased by the sonochemical 1,3-dipolar cycloaddition process, yielding 1,4-disubstituted-1,2,3-triazoles at 40 °C using a promotor ligand <span>l</span>-phenylalanine within 30 min in >90 % yield in aqueous media with high purity. The biocompatible promoter ligand assists the STR Cu chelate to enhance the reaction rate by stabilizing the Cu(I) oxidation state and preventing its undesirable disproportionation, thus increasing the yield of the intended product. The synthesized catalyst demonstrates extensive substrate compatibility and works equally well with precursors containing both electron donating and withdrawing groups (<strong>4–25</strong>). Additionally, all the synthesized compounds, as well as the catalyst, have been duly characterized by the usual analytical and spectroscopic techniques. Furthermore, the catalyst could be reused up to four cycles without a significant reduction in its catalytic performance.</div></div>","PeriodicalId":437,"journal":{"name":"Tetrahedron","volume":"177 ","pages":"Article 134564"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040402025001206","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
This research work introduces a pioneering strategy for harnessing the potential of expired streptomycin sulfate as its copper chelate to catalyze the synthesis of biologically important 1,4-disubstituted-1,2,3-triazoles efficiently. The efficacy of this catalyst is showcased by the sonochemical 1,3-dipolar cycloaddition process, yielding 1,4-disubstituted-1,2,3-triazoles at 40 °C using a promotor ligand l-phenylalanine within 30 min in >90 % yield in aqueous media with high purity. The biocompatible promoter ligand assists the STR Cu chelate to enhance the reaction rate by stabilizing the Cu(I) oxidation state and preventing its undesirable disproportionation, thus increasing the yield of the intended product. The synthesized catalyst demonstrates extensive substrate compatibility and works equally well with precursors containing both electron donating and withdrawing groups (4–25). Additionally, all the synthesized compounds, as well as the catalyst, have been duly characterized by the usual analytical and spectroscopic techniques. Furthermore, the catalyst could be reused up to four cycles without a significant reduction in its catalytic performance.
期刊介绍:
Tetrahedron publishes full accounts of research having outstanding significance in the broad field of organic chemistry and its related disciplines, such as organic materials and bio-organic chemistry.
Regular papers in Tetrahedron are expected to represent detailed accounts of an original study having substantially greater scope and details than that found in a communication, as published in Tetrahedron Letters.
Tetrahedron also publishes thematic collections of papers as special issues and ''Reports'', commissioned in-depth reviews providing a comprehensive overview of a research area.