Curcumin and EGCG combined formulation in nanostructured lipid carriers for anti-aging applications

IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Chidchanok Prathumwon , Songyot Anuchapreeda , Kanokwan Kiattisin , Pawaret Panyajai , Panikchar Wichayapreechar , Young-Joon Surh , Chadarat Ampasavate
{"title":"Curcumin and EGCG combined formulation in nanostructured lipid carriers for anti-aging applications","authors":"Chidchanok Prathumwon ,&nbsp;Songyot Anuchapreeda ,&nbsp;Kanokwan Kiattisin ,&nbsp;Pawaret Panyajai ,&nbsp;Panikchar Wichayapreechar ,&nbsp;Young-Joon Surh ,&nbsp;Chadarat Ampasavate","doi":"10.1016/j.ijpx.2025.100323","DOIUrl":null,"url":null,"abstract":"<div><div>Curcumin (Cur) and epigallocatechin gallate (EGCG), the primary active compounds in turmeric and green tea, respectively, have been investigated for their anti-aging potential. The Cur and EGCG combination was encapsulated in sustained-release nanostructured lipid carriers (NLCs) to enhance their bioactivities and pharmaceutical properties. A significant enhancement in the antioxidant activities of the Cur and EGCG combination was observed at an optimal ratio, as demonstrated by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay (118.83 ± 3.78 %), ferric ion reducing antioxidant power assay (217.25 ± 13.45 %), and lipid peroxidation inhibition assay (106.08 ± 12.93 %), compared to Cur alone without compromising the antioxidant activities and total phenolic content of EGCG. This is due to the enhancement of total phenolic content of the combination of 218.83 ± 10.57 %. For anti-aging activities, the combination exhibited stimulation of SIRT1 protein and inhibition of collagenase and elastase of 27.53 ± 0.73 %, 43.70 ± 1.05 % and 51.76 ± 6.52 % compared with that achieved with Cur alone, respectively. The incorporation of the Cur and EGCG combination into NLCs resulted in high entrapment efficiencies of 98.60 ± 0.05 % for Cur and 98.40 ± 0.08 % for EGCG, with corresponding loading capacities of 0.789 ± 0.001 % and 3.935 ± 0.003 %, respectively. When formulated NLCs into an emulgel base, the system demonstrated sustained release profiles over 48 h, with 12.82 ± 0.99 % release of Cur and 63.77 ± 5.76 % release of EGCG. Significant skin retention was also observed after 24 h, with 23.88 ± 1.71 % Cur and 22.79 ± 4.65 % EGCG retained in the skin. Therefore, Cur: EGCG-loaded NLCs in emulgel can deliver the active compounds into the dermis, enhancing skin penetration, sustained delivery, and anti-aging activity superior to each conventional single active compound in topical formulations.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"9 ","pages":"Article 100323"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000088","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Curcumin (Cur) and epigallocatechin gallate (EGCG), the primary active compounds in turmeric and green tea, respectively, have been investigated for their anti-aging potential. The Cur and EGCG combination was encapsulated in sustained-release nanostructured lipid carriers (NLCs) to enhance their bioactivities and pharmaceutical properties. A significant enhancement in the antioxidant activities of the Cur and EGCG combination was observed at an optimal ratio, as demonstrated by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay (118.83 ± 3.78 %), ferric ion reducing antioxidant power assay (217.25 ± 13.45 %), and lipid peroxidation inhibition assay (106.08 ± 12.93 %), compared to Cur alone without compromising the antioxidant activities and total phenolic content of EGCG. This is due to the enhancement of total phenolic content of the combination of 218.83 ± 10.57 %. For anti-aging activities, the combination exhibited stimulation of SIRT1 protein and inhibition of collagenase and elastase of 27.53 ± 0.73 %, 43.70 ± 1.05 % and 51.76 ± 6.52 % compared with that achieved with Cur alone, respectively. The incorporation of the Cur and EGCG combination into NLCs resulted in high entrapment efficiencies of 98.60 ± 0.05 % for Cur and 98.40 ± 0.08 % for EGCG, with corresponding loading capacities of 0.789 ± 0.001 % and 3.935 ± 0.003 %, respectively. When formulated NLCs into an emulgel base, the system demonstrated sustained release profiles over 48 h, with 12.82 ± 0.99 % release of Cur and 63.77 ± 5.76 % release of EGCG. Significant skin retention was also observed after 24 h, with 23.88 ± 1.71 % Cur and 22.79 ± 4.65 % EGCG retained in the skin. Therefore, Cur: EGCG-loaded NLCs in emulgel can deliver the active compounds into the dermis, enhancing skin penetration, sustained delivery, and anti-aging activity superior to each conventional single active compound in topical formulations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Pharmaceutics: X
International Journal of Pharmaceutics: X Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.60
自引率
0.00%
发文量
32
审稿时长
24 days
期刊介绍: International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible. International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ. The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信