Electrochemical sensor based on nickel phthalocyanine conjugated polymer for selective detection of p-aminophenol

IF 4.9 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Xue Cai, Rui Tao, Meitong Li, Xinyu Yun, Xinyu Yang, Jiayue Sun, Chuangyu Wei
{"title":"Electrochemical sensor based on nickel phthalocyanine conjugated polymer for selective detection of p-aminophenol","authors":"Xue Cai,&nbsp;Rui Tao,&nbsp;Meitong Li,&nbsp;Xinyu Yun,&nbsp;Xinyu Yang,&nbsp;Jiayue Sun,&nbsp;Chuangyu Wei","doi":"10.1016/j.microc.2025.113191","DOIUrl":null,"url":null,"abstract":"<div><div>This work reports an advanced, high-efficiency electrochemical sensor for detecting p-aminophenol (p-AP), based on a nickel phthalocyanine polymer containing an S-linker. The nickel phthalocyanine polymer was synthesized via the cyclization reaction with <em>ortho</em>-positioned dicyano groups. The nickel phthalocyanine polymer was drop-coated on GCE to form a modified electrode (PNiPc@GCE), which demonstrated sensitive electrochemical responses. Optimal conditions for preparing the modified electrode and detecting p-AP were selected through electrochemical experiments. Cyclic voltammetry (CV) curves at different rates (20 mV s<sup>−1</sup> ∼ 200 mV/s) indicated that the oxidation of p-AP follows a diffusion-controlled process on the surface of the PNiPc@GCE electrode. The p-AP, in the range of 0.1 ∼ 1000 μM, was detected using DPV curves, displaying a good linear response under optimal conditions. The sensitivity was determined to be 21.70 mA µM<sup>−1</sup> cm<sup>−2</sup>, and the LOD was 20 nM (S/N = 3). Furthermore, the recovery experiments were conducted at different concentration levels in practical water samples, showing relatively satisfactory recoveries and indicating the potential of the PNiPc@GCE sensor for quantitative detection of p-AP molecules in practical applications. Following storage at room temperature for eight weeks, the sensor remained at 95 % of its original peak current, with negligible interference. Therefore, the developed sensor made a valuable contribution to advancing electrochemical sensing technology and its application in the environment.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"212 ","pages":"Article 113191"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X25005454","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work reports an advanced, high-efficiency electrochemical sensor for detecting p-aminophenol (p-AP), based on a nickel phthalocyanine polymer containing an S-linker. The nickel phthalocyanine polymer was synthesized via the cyclization reaction with ortho-positioned dicyano groups. The nickel phthalocyanine polymer was drop-coated on GCE to form a modified electrode (PNiPc@GCE), which demonstrated sensitive electrochemical responses. Optimal conditions for preparing the modified electrode and detecting p-AP were selected through electrochemical experiments. Cyclic voltammetry (CV) curves at different rates (20 mV s−1 ∼ 200 mV/s) indicated that the oxidation of p-AP follows a diffusion-controlled process on the surface of the PNiPc@GCE electrode. The p-AP, in the range of 0.1 ∼ 1000 μM, was detected using DPV curves, displaying a good linear response under optimal conditions. The sensitivity was determined to be 21.70 mA µM−1 cm−2, and the LOD was 20 nM (S/N = 3). Furthermore, the recovery experiments were conducted at different concentration levels in practical water samples, showing relatively satisfactory recoveries and indicating the potential of the PNiPc@GCE sensor for quantitative detection of p-AP molecules in practical applications. Following storage at room temperature for eight weeks, the sensor remained at 95 % of its original peak current, with negligible interference. Therefore, the developed sensor made a valuable contribution to advancing electrochemical sensing technology and its application in the environment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchemical Journal
Microchemical Journal 化学-分析化学
CiteScore
8.70
自引率
8.30%
发文量
1131
审稿时长
1.9 months
期刊介绍: The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field. Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信