Solutions to Two- and Three-Dimensional Incompressible Flow Fields Leveraging a Physics-Informed Deep Learning Framework and Kolmogorov–Arnold Networks
IF 1.7 4区 工程技术Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"Solutions to Two- and Three-Dimensional Incompressible Flow Fields Leveraging a Physics-Informed Deep Learning Framework and Kolmogorov–Arnold Networks","authors":"Quan Jiang, Zhiyong Gou","doi":"10.1002/fld.5374","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Physics-informed neural network (PINN) has become a potential technology for fluid dynamics simulations, but traditional PINN has low accuracy in simulating incompressible flows, and these problems can lead to PINN not converging. This paper proposes a physics-informed neural network method (KA-PINN) based on the Kolmogorov–Arnold Neural (KAN) network structure. It is used to solve two-dimensional and three-dimensional incompressible fluid dynamics problems. The flow field is reconstructed and predicted for the two-dimensional Kovasznay flow and the three-dimensional Beltrami flow. The results show that the prediction accuracy of KA-PINN is improved by about 5 times in two dimensions and 2 times in three dimensions compared with the fully connected network structure of PINN. Meanwhile, the number of network parameters is reduced by 8 to 10 times. The research results not only verify the application potential of KA-PINN in fluid dynamics simulations, but also demonstrate the feasibility of KAN network structure in improving the ability of PINN to solve and predict flow fields. This study can reduce the dependence on traditional numerical methods for solving fluid dynamics problems.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 4","pages":"665-673"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5374","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Physics-informed neural network (PINN) has become a potential technology for fluid dynamics simulations, but traditional PINN has low accuracy in simulating incompressible flows, and these problems can lead to PINN not converging. This paper proposes a physics-informed neural network method (KA-PINN) based on the Kolmogorov–Arnold Neural (KAN) network structure. It is used to solve two-dimensional and three-dimensional incompressible fluid dynamics problems. The flow field is reconstructed and predicted for the two-dimensional Kovasznay flow and the three-dimensional Beltrami flow. The results show that the prediction accuracy of KA-PINN is improved by about 5 times in two dimensions and 2 times in three dimensions compared with the fully connected network structure of PINN. Meanwhile, the number of network parameters is reduced by 8 to 10 times. The research results not only verify the application potential of KA-PINN in fluid dynamics simulations, but also demonstrate the feasibility of KAN network structure in improving the ability of PINN to solve and predict flow fields. This study can reduce the dependence on traditional numerical methods for solving fluid dynamics problems.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.