Gabriel Rodrigues Coutinho Pereira*, Loiane Mendonça Abrantes Da Conceição, Bárbara de Azevedo Abrahim-Vieira, Carlos Rangel Rodrigues, Lucio Mendes Cabral, Ricardo Limongi França Coelho and Joelma Freire De Mesquita,
{"title":"XGBMUT: Predicting the Functional Impact of Missense Mutations Using an Extreme Gradient Boost Classifier","authors":"Gabriel Rodrigues Coutinho Pereira*, Loiane Mendonça Abrantes Da Conceição, Bárbara de Azevedo Abrahim-Vieira, Carlos Rangel Rodrigues, Lucio Mendes Cabral, Ricardo Limongi França Coelho and Joelma Freire De Mesquita, ","doi":"10.1021/acsomega.4c1017910.1021/acsomega.4c10179","DOIUrl":null,"url":null,"abstract":"<p >Millions of new mutations have been discovered largely due to advancements in genome projects, but characterizing their effects through traditional wet-lab experiments remains labor-intensive and time-consuming. Functional prediction algorithms offer a solution by enabling the efficient screening of mutations, thereby saving time and resources. The objective of this study was to develop a competitive algorithm for predicting the functional impact of missense mutations. A unified database and substitution matrices containing predictor variables specifically for missense mutations were initially constructed. Subsequently, values for the predictor variables were collected from the training and test sets derived from the ClinVar and HumsaVar databases. A series of supervised machine learning classifiers were then trained, and their performance was evaluated using the test set. The best-performing model was additionally compared against ten currently available functional prediction algorithms. The proposed algorithm, XGBMut, demonstrates exceptional accuracy in classifying missense mutations while also exhibiting a competitive performance. Additionally, a user-friendly graphical interface was developed to enhance accessibility for professionals in various fields. Unlike most existing methods, XGBMut eliminates the need for a web server dependency and the installation of third-party software, making it a more versatile tool for users.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 8","pages":"8349–8360 8349–8360"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c10179","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c10179","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Millions of new mutations have been discovered largely due to advancements in genome projects, but characterizing their effects through traditional wet-lab experiments remains labor-intensive and time-consuming. Functional prediction algorithms offer a solution by enabling the efficient screening of mutations, thereby saving time and resources. The objective of this study was to develop a competitive algorithm for predicting the functional impact of missense mutations. A unified database and substitution matrices containing predictor variables specifically for missense mutations were initially constructed. Subsequently, values for the predictor variables were collected from the training and test sets derived from the ClinVar and HumsaVar databases. A series of supervised machine learning classifiers were then trained, and their performance was evaluated using the test set. The best-performing model was additionally compared against ten currently available functional prediction algorithms. The proposed algorithm, XGBMut, demonstrates exceptional accuracy in classifying missense mutations while also exhibiting a competitive performance. Additionally, a user-friendly graphical interface was developed to enhance accessibility for professionals in various fields. Unlike most existing methods, XGBMut eliminates the need for a web server dependency and the installation of third-party software, making it a more versatile tool for users.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.