Muhammad Zaman Khan*, Hadi Taghavian, Xiuling Zhang, Jiri Militky, Azam Ali, Jakub Wiener, Veronika Tunáková, Mohanapriya Venkataraman* and Lukas Dvorak,
{"title":"Highly Stable, Flexible, Anticorrosive Coating of Metalized Nonwoven Textiles for Durable EMI Shielding and Thermal Properties","authors":"Muhammad Zaman Khan*, Hadi Taghavian, Xiuling Zhang, Jiri Militky, Azam Ali, Jakub Wiener, Veronika Tunáková, Mohanapriya Venkataraman* and Lukas Dvorak, ","doi":"10.1021/acsomega.4c0946710.1021/acsomega.4c09467","DOIUrl":null,"url":null,"abstract":"<p >In the present research, an advanced silane-bonded polydopamine (PDA) coating through a simple, low-cost, and highly effective technique was employed to enhance the stability of copper-coated electromagnetic shielding fabrics. Coating the metalized nonwoven PET fabric with PDA can protect it from oxidation, mechanical forces, and extreme chemical conditions such as acid and alkali corrosion. The coated nonwoven fabric retained its excellent electromagnetic shielding effect even after machine- and handwashing cycles, showing average shielding effectiveness (SE) values above 41 dB for PDA@MEFTEX and Si-QAC/PDA@MEFTEX samples, and the average SE remained consistently above 39 dB under acidic and alkaline conditions. The PDA-coated MEFTEX did not significantly increase the surface and volume resistivities and exhibited excellent thermal insulation properties. In addition, silane-bonded PDA coating increased the softness, acted as a barrier, and provided a perfect interface that inhibits the penetration of corrosive ions from the surroundings. This outcome further highlights the promising impact of the novel coating, serving as protective coverage for metalized nonwoven fabric and providing good physical and thermal properties. This method can effectively protect electromagnetic shielding cloth, prolong the use time of shielding material, and expand its scope of application.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 8","pages":"8127–8139 8127–8139"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09467","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09467","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present research, an advanced silane-bonded polydopamine (PDA) coating through a simple, low-cost, and highly effective technique was employed to enhance the stability of copper-coated electromagnetic shielding fabrics. Coating the metalized nonwoven PET fabric with PDA can protect it from oxidation, mechanical forces, and extreme chemical conditions such as acid and alkali corrosion. The coated nonwoven fabric retained its excellent electromagnetic shielding effect even after machine- and handwashing cycles, showing average shielding effectiveness (SE) values above 41 dB for PDA@MEFTEX and Si-QAC/PDA@MEFTEX samples, and the average SE remained consistently above 39 dB under acidic and alkaline conditions. The PDA-coated MEFTEX did not significantly increase the surface and volume resistivities and exhibited excellent thermal insulation properties. In addition, silane-bonded PDA coating increased the softness, acted as a barrier, and provided a perfect interface that inhibits the penetration of corrosive ions from the surroundings. This outcome further highlights the promising impact of the novel coating, serving as protective coverage for metalized nonwoven fabric and providing good physical and thermal properties. This method can effectively protect electromagnetic shielding cloth, prolong the use time of shielding material, and expand its scope of application.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.