Misbah Imtiaz, Nabi Shah*, Muhammad Ikram, Zia Uddin, Qurat-ul-Ain, Abdulhakeem S. Alamri, Majid Alhomrani and Abdul Jabbar Shah,
{"title":"Acute Toxicity and Antihyperlipidemic Effects of Syringaldehyde with Downregulation of SREBP-2 Gene Expression in Rats","authors":"Misbah Imtiaz, Nabi Shah*, Muhammad Ikram, Zia Uddin, Qurat-ul-Ain, Abdulhakeem S. Alamri, Majid Alhomrani and Abdul Jabbar Shah, ","doi":"10.1021/acsomega.4c1118410.1021/acsomega.4c11184","DOIUrl":null,"url":null,"abstract":"<p >Hyperlipidemia, a condition characterized by elevated lipid levels, presents significant cardiovascular risks. Syringaldehyde (SA), a phenolic aldehyde derived from plants, exhibits antioxidant, antihyperglycemic, and anti-inflammatory properties. However, its potential toxicity and effects on hyperlipidemia have not been studied. In this study, we evaluated the safety profile and antihyperlipidemic effects of SA. To assess acute toxicity, Sprague–Dawley rats were divided into two groups (<i>n</i> = 5 in each group): the control group received a vehicle, while the treatment group was administered a single oral dose of SA 2000 mg/kg, and rats were observed up to 14 days. To investigate the antihyperlipidemic effects of SA, rats were allocated into six groups (<i>n</i> = 5 in each group). Group 1 (control) received a vehicle, group 2 (hyperlipidemic) was treated with tyloxapol (i.p 400 mg/kg), while groups 3–6 received atorvastatin 10 mg/kg and SA 10, 20, and 40 mg/kg, respectively, post tyloxapol injection. The acute toxicity results showed that SA exhibits LD<sub>50</sub> above 2000 mg/kg. Hematological analyses showed no significant changes, except for a notable increase in the platelet count. Additionally, SA significantly decreases cholesterol, triglyceride, and creatinine levels, along with elevated alanine transaminase, alkaline phosphatase, and urea levels. Markers of oxidative stress confirmed SA’s antioxidant properties, and histopathological examination revealed normal cellular structure of selected organs. In the hyperlipidemic model, SA effectively and dose dependently reduced hyperlipidemia by lowering total cholesterol, triglycerides, and LDL levels and improved hepatocellular structure affected by tyloxapol. Moreover, gene expression analysis demonstrated significant downregulation in SREBP-2 gene expression along with reduced HMG-CoA reductase activity. Overall, this study supports the safety and low toxicity of SA and its promising antihyperlipidemic effects.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 8","pages":"8619–8629 8619–8629"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c11184","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c11184","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperlipidemia, a condition characterized by elevated lipid levels, presents significant cardiovascular risks. Syringaldehyde (SA), a phenolic aldehyde derived from plants, exhibits antioxidant, antihyperglycemic, and anti-inflammatory properties. However, its potential toxicity and effects on hyperlipidemia have not been studied. In this study, we evaluated the safety profile and antihyperlipidemic effects of SA. To assess acute toxicity, Sprague–Dawley rats were divided into two groups (n = 5 in each group): the control group received a vehicle, while the treatment group was administered a single oral dose of SA 2000 mg/kg, and rats were observed up to 14 days. To investigate the antihyperlipidemic effects of SA, rats were allocated into six groups (n = 5 in each group). Group 1 (control) received a vehicle, group 2 (hyperlipidemic) was treated with tyloxapol (i.p 400 mg/kg), while groups 3–6 received atorvastatin 10 mg/kg and SA 10, 20, and 40 mg/kg, respectively, post tyloxapol injection. The acute toxicity results showed that SA exhibits LD50 above 2000 mg/kg. Hematological analyses showed no significant changes, except for a notable increase in the platelet count. Additionally, SA significantly decreases cholesterol, triglyceride, and creatinine levels, along with elevated alanine transaminase, alkaline phosphatase, and urea levels. Markers of oxidative stress confirmed SA’s antioxidant properties, and histopathological examination revealed normal cellular structure of selected organs. In the hyperlipidemic model, SA effectively and dose dependently reduced hyperlipidemia by lowering total cholesterol, triglycerides, and LDL levels and improved hepatocellular structure affected by tyloxapol. Moreover, gene expression analysis demonstrated significant downregulation in SREBP-2 gene expression along with reduced HMG-CoA reductase activity. Overall, this study supports the safety and low toxicity of SA and its promising antihyperlipidemic effects.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.