Fish Gelatin-Hyaluronic Acid Scaffold for Construction of an Artificial Three-Dimensional Skin Model

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Piriya Chailom, Thitiporn Pattarakankul, Tanapat Palaga and Voravee P. Hoven*, 
{"title":"Fish Gelatin-Hyaluronic Acid Scaffold for Construction of an Artificial Three-Dimensional Skin Model","authors":"Piriya Chailom,&nbsp;Thitiporn Pattarakankul,&nbsp;Tanapat Palaga and Voravee P. Hoven*,&nbsp;","doi":"10.1021/acsomega.4c0970810.1021/acsomega.4c09708","DOIUrl":null,"url":null,"abstract":"<p >Artificial three-dimensional (3D) skin models have been used as an alternative tool for toxicity testing, skin disease studying, and skin tissue engineering. The 3D skin model can be fabricated using a porous scaffold that provides 3D cellular construction that supports cell attachment and promotes nutrient and air permeation. In this study, fish gelatin (FG) and hyaluronic acid (HA) were selected for scaffold fabrication because they carry no risk of zoonotic disease transmission and are major components of the extracellular matrix (ECM), which may functionally mimic the ECM of native human skin. The FG-HA scaffolds prepared by using a freeze-drying technique were characterized for their porosity, swelling ratio, and mechanical properties. The scaffolds were seeded with dermal fibroblasts and epidermal keratinocytes followed by culturing in air–liquid interface conditions to allow for cell differentiation to form the dermis and epidermis layer, respectively. Histological analysis of the fabricated 3D skin using the FG-HA scaffold clearly exhibited a bilayer of the dermis and epidermis. Additionally, immunochemical staining of the epidermis layer demonstrated the expression of keratin 5, loricrin, and filaggrin, confirming the proliferation and differentiation of keratinocytes. This research evidently suggests that the FG-HA porous scaffold can serve as a potential material for constructing a 3D skin model with characteristics that closely resemble native human skin.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 8","pages":"8172–8181 8172–8181"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09708","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09708","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial three-dimensional (3D) skin models have been used as an alternative tool for toxicity testing, skin disease studying, and skin tissue engineering. The 3D skin model can be fabricated using a porous scaffold that provides 3D cellular construction that supports cell attachment and promotes nutrient and air permeation. In this study, fish gelatin (FG) and hyaluronic acid (HA) were selected for scaffold fabrication because they carry no risk of zoonotic disease transmission and are major components of the extracellular matrix (ECM), which may functionally mimic the ECM of native human skin. The FG-HA scaffolds prepared by using a freeze-drying technique were characterized for their porosity, swelling ratio, and mechanical properties. The scaffolds were seeded with dermal fibroblasts and epidermal keratinocytes followed by culturing in air–liquid interface conditions to allow for cell differentiation to form the dermis and epidermis layer, respectively. Histological analysis of the fabricated 3D skin using the FG-HA scaffold clearly exhibited a bilayer of the dermis and epidermis. Additionally, immunochemical staining of the epidermis layer demonstrated the expression of keratin 5, loricrin, and filaggrin, confirming the proliferation and differentiation of keratinocytes. This research evidently suggests that the FG-HA porous scaffold can serve as a potential material for constructing a 3D skin model with characteristics that closely resemble native human skin.

鱼明胶-透明质酸支架构建人工三维皮肤模型
人造三维(3D)皮肤模型已被用作毒性测试、皮肤病研究和皮肤组织工程的替代工具。3D皮肤模型可以使用多孔支架制造,多孔支架提供3D细胞结构,支持细胞附着并促进营养物质和空气渗透。在这项研究中,选择鱼明胶(FG)和透明质酸(HA)来制作支架,因为它们没有人畜共患疾病传播的风险,并且是细胞外基质(ECM)的主要成分,可以在功能上模仿天然人类皮肤的ECM。利用冻干技术制备的FG-HA支架对其孔隙率、膨胀率和力学性能进行了表征。在支架中植入真皮成纤维细胞和表皮角质形成细胞,然后在气液界面条件下培养,使细胞分化形成真皮层和表皮层。使用FG-HA支架制作的3D皮肤的组织学分析清楚地显示出真皮和表皮的双层。此外,表皮层免疫化学染色显示角蛋白5、loricrin和聚丝蛋白的表达,证实了角质形成细胞的增殖和分化。这项研究表明,FG-HA多孔支架可以作为一种潜在的材料,用于构建具有与人体皮肤相似特征的3D皮肤模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信