{"title":"Pyrolysis Characteristics of Tire Rubber at Low Temperatures","authors":"Emmanuel Awosu, Yuka Hirano, Shogo Kumagai*, Yuko Saito, Seiichi Tahara, Takayuki Nasi, Masahiro Homma, Takakazu Minato, Masahiro Hojo and Toshiaki Yoshioka, ","doi":"10.1021/acsomega.4c0945610.1021/acsomega.4c09456","DOIUrl":null,"url":null,"abstract":"<p >Pyrolysis of used tires is a promising method for recovering valuable chemicals. However, the conventional high-temperature pyrolysis of natural rubber (polyisoprene)-based tires suffers from a low-selective isoprene recovery, heavy carbon black (CB) damage, and coke formation on the CB. In this paper, we report on characteristics of the low-temperature pyrolysis of CB-containing polyisoprene-based tire rubber that is vulcanized with sulfur. The low-temperature pyrolysis of the tire rubber cleaves the main chain and cross-linking bonds, which allows for the recovery of low-molecular-weight tire rubbers, tire rubber dissolution into the solvent, and CB isolation from the rubber matrix. The maximum liquid rubber recovery rate was 76.7% after 1 h of heating at 282 °C. In addition, the molecular weight of the thermally treated rubber substantially decreased from <i>M</i><sub>w</sub> 340,000 to approximately 20,000 after 1 h of heating at 282 °C. Furthermore, the maximum isoprene skeleton retention rate of the recovered rubber was 83% at 267 °C after 1 h of heating. The remaining rubber matrix on the recovered CB surface was nearly eliminated at temperatures above 320 °C. In conclusion, we believe that the low-temperature pyrolysis of tire rubber is a promising pretreatment method for recovering CB without thermal damage and reducing the molecular weight of tire rubber, which will improve the recovery of isoprene.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 8","pages":"8119–8126 8119–8126"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09456","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09456","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pyrolysis of used tires is a promising method for recovering valuable chemicals. However, the conventional high-temperature pyrolysis of natural rubber (polyisoprene)-based tires suffers from a low-selective isoprene recovery, heavy carbon black (CB) damage, and coke formation on the CB. In this paper, we report on characteristics of the low-temperature pyrolysis of CB-containing polyisoprene-based tire rubber that is vulcanized with sulfur. The low-temperature pyrolysis of the tire rubber cleaves the main chain and cross-linking bonds, which allows for the recovery of low-molecular-weight tire rubbers, tire rubber dissolution into the solvent, and CB isolation from the rubber matrix. The maximum liquid rubber recovery rate was 76.7% after 1 h of heating at 282 °C. In addition, the molecular weight of the thermally treated rubber substantially decreased from Mw 340,000 to approximately 20,000 after 1 h of heating at 282 °C. Furthermore, the maximum isoprene skeleton retention rate of the recovered rubber was 83% at 267 °C after 1 h of heating. The remaining rubber matrix on the recovered CB surface was nearly eliminated at temperatures above 320 °C. In conclusion, we believe that the low-temperature pyrolysis of tire rubber is a promising pretreatment method for recovering CB without thermal damage and reducing the molecular weight of tire rubber, which will improve the recovery of isoprene.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.