Rewritable Broadband Lossy Absorber Based on Laser Induction Technology

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hao-Ran Ma, Shao-rui Yang, Si Wu, Xiao-hui Su, Ya-guang Ye, Lei Liu, Wei Xiong, Lei-min Deng, Tian-ting Chen
{"title":"Rewritable Broadband Lossy Absorber Based on Laser Induction Technology","authors":"Hao-Ran Ma,&nbsp;Shao-rui Yang,&nbsp;Si Wu,&nbsp;Xiao-hui Su,&nbsp;Ya-guang Ye,&nbsp;Lei Liu,&nbsp;Wei Xiong,&nbsp;Lei-min Deng,&nbsp;Tian-ting Chen","doi":"10.1002/admt.202401162","DOIUrl":null,"url":null,"abstract":"<p>The tunable and reversible fabrication function of stealth metasurfaces has significant application value in complex electromagnetic environments., but the extremely low fault tolerance of the existing fabrication methods limits their further development and utilization. In this manuscript, a design and fabrication method for rewritable broadband stealth metasurfaces with memory function is proposed. The reversible phase transition is achieved by laser induced germanium telluride (GeTe) film, which provides the possibility for metasurface to realize the rewriting function. The process of laser induced GeTe and the simulation model of GeTe are investigated, and the conclusions are verified by rewritable broadband polarization converter (RBPC) and rewritable broadband lossy absorber (RBLA). The experimental results show that the reflectivity of fabricated RBLA is less than −10 dB in the range of 7.8–16.1 GHz, which is in good agreement with the numerical simulation results. Meanwhile, there is a highly consistent performance effect before and after repeated induction. The research has the advantages of high efficiency, region selectivity, non volatility and high fault tolerance, which can provide new manufacturing ideas and good candidates for tunable metamaterials.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202401162","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The tunable and reversible fabrication function of stealth metasurfaces has significant application value in complex electromagnetic environments., but the extremely low fault tolerance of the existing fabrication methods limits their further development and utilization. In this manuscript, a design and fabrication method for rewritable broadband stealth metasurfaces with memory function is proposed. The reversible phase transition is achieved by laser induced germanium telluride (GeTe) film, which provides the possibility for metasurface to realize the rewriting function. The process of laser induced GeTe and the simulation model of GeTe are investigated, and the conclusions are verified by rewritable broadband polarization converter (RBPC) and rewritable broadband lossy absorber (RBLA). The experimental results show that the reflectivity of fabricated RBLA is less than −10 dB in the range of 7.8–16.1 GHz, which is in good agreement with the numerical simulation results. Meanwhile, there is a highly consistent performance effect before and after repeated induction. The research has the advantages of high efficiency, region selectivity, non volatility and high fault tolerance, which can provide new manufacturing ideas and good candidates for tunable metamaterials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信