{"title":"Assessment of Air Curtain Control Efficacy in Preventing Contaminant Transmission in Cleanrooms","authors":"Junzhou He, Hongtao Xu, Mingrui Cao, Qianshun Liang, Saichong Zhang, Miao Yu, Haiyang Liu, Zhijian Liu, Jingwei Liu","doi":"10.1155/ina/8831086","DOIUrl":null,"url":null,"abstract":"<p>Maintaining high air cleanliness in cleanrooms is crucial in manufacturing processes and scientific research. However, personnel movement can breach the sealed environment, allowing contaminant to enter cleanrooms due to disturbance created. Air curtains are a traditional solution to limit air exchange, but their control efficacy in preventing contaminant transmission into cleanrooms requires careful evaluation. In this study, factors influencing the air curtain control efficacy such as the air curtain’s supply area, personnel movement speed, and temperature difference were evaluated using computational fluid dynamics with dynamic grid technology. The results indicated that increasing the air curtain’s supply area reduced contaminant concentration in cleanrooms; however, the effectiveness in blocking contaminant transport did not improve beyond a certain supply area (0.4 m<sup>2</sup>). High personnel movement increased contaminant influx, and maintaining a low speed (0.25 m/s) significantly reduced the overall influx. As the personnel movement speed increased from 0.25 to 1.50 m/s, the total amount of contaminant increased from 2.5 × 10<sup>−8</sup> to 7 × 10<sup>−7</sup> kg/s. When the temperature difference decreased from 7°C to 1°C, the average dimensionless concentration of contaminant in cleanrooms after personnel movement decreased from 8.5 × 10<sup>−3</sup> to 1 × 10<sup>−4</sup>. Generally, air curtains perform well but require precise design. On the basis of these findings, future research can further complement overlooked factors and enable more detailed design and control, thereby improving the efficiency and sustainability of cleanroom design and control strategies.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ina/8831086","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/ina/8831086","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining high air cleanliness in cleanrooms is crucial in manufacturing processes and scientific research. However, personnel movement can breach the sealed environment, allowing contaminant to enter cleanrooms due to disturbance created. Air curtains are a traditional solution to limit air exchange, but their control efficacy in preventing contaminant transmission into cleanrooms requires careful evaluation. In this study, factors influencing the air curtain control efficacy such as the air curtain’s supply area, personnel movement speed, and temperature difference were evaluated using computational fluid dynamics with dynamic grid technology. The results indicated that increasing the air curtain’s supply area reduced contaminant concentration in cleanrooms; however, the effectiveness in blocking contaminant transport did not improve beyond a certain supply area (0.4 m2). High personnel movement increased contaminant influx, and maintaining a low speed (0.25 m/s) significantly reduced the overall influx. As the personnel movement speed increased from 0.25 to 1.50 m/s, the total amount of contaminant increased from 2.5 × 10−8 to 7 × 10−7 kg/s. When the temperature difference decreased from 7°C to 1°C, the average dimensionless concentration of contaminant in cleanrooms after personnel movement decreased from 8.5 × 10−3 to 1 × 10−4. Generally, air curtains perform well but require precise design. On the basis of these findings, future research can further complement overlooked factors and enable more detailed design and control, thereby improving the efficiency and sustainability of cleanroom design and control strategies.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.