John T. Kemper, Kristen L. Underwood, Scott D. Hamshaw, Dany Davis, Jason Siemion, James B. Shanley, Andrew W. Schroth
{"title":"Leveraging High-Frequency Sensor Data and U.S. National Water Model Output to Forecast Turbidity in a Drinking Water Supply Basin","authors":"John T. Kemper, Kristen L. Underwood, Scott D. Hamshaw, Dany Davis, Jason Siemion, James B. Shanley, Andrew W. Schroth","doi":"10.1111/1752-1688.70011","DOIUrl":null,"url":null,"abstract":"<p>As high-frequency sensor networks increasingly enhance data-driven models of water quality, process-based models like the U.S. National Water Model (NWM) are generating accessible forecasts of streamflow at increasingly dense scales. There is now an opportunity to combine these products to construct actionable water quality forecasts. To that end, we couple streamflow forecasts from the NWM to a gradient-boosted decision tree algorithm (LightGBM) trained on 5+ years of high-frequency monitoring data to forecast in-stream turbidity levels in the Catskill Mountains, NY, USA. Results indicate LightGBM models are capable of relatively skillful predictions, which enable robust forecasts for 1–3 days lead times. LightGBM models offer improvements over a simplified linear model across the entire forecast horizon, and more spatially complex models are more resilient to error at shorter lead times (1–3 days). Moreover, interpretation of model features emphasizes high flows as a driver of turbidity in the region. Results suggest that interpretable, flexible, and efficient machine learning algorithms can produce capable water quality forecasts from streamflow forecasts and expand understanding of process dynamics. The use case illustrated here—to our knowledge the first NWM-based water quality forecast—underscores the potential to employ the NWM to expand national water quality forecasting capacity and can overall serve as a guide for similar efforts in basins across the country.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.70011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.70011","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
As high-frequency sensor networks increasingly enhance data-driven models of water quality, process-based models like the U.S. National Water Model (NWM) are generating accessible forecasts of streamflow at increasingly dense scales. There is now an opportunity to combine these products to construct actionable water quality forecasts. To that end, we couple streamflow forecasts from the NWM to a gradient-boosted decision tree algorithm (LightGBM) trained on 5+ years of high-frequency monitoring data to forecast in-stream turbidity levels in the Catskill Mountains, NY, USA. Results indicate LightGBM models are capable of relatively skillful predictions, which enable robust forecasts for 1–3 days lead times. LightGBM models offer improvements over a simplified linear model across the entire forecast horizon, and more spatially complex models are more resilient to error at shorter lead times (1–3 days). Moreover, interpretation of model features emphasizes high flows as a driver of turbidity in the region. Results suggest that interpretable, flexible, and efficient machine learning algorithms can produce capable water quality forecasts from streamflow forecasts and expand understanding of process dynamics. The use case illustrated here—to our knowledge the first NWM-based water quality forecast—underscores the potential to employ the NWM to expand national water quality forecasting capacity and can overall serve as a guide for similar efforts in basins across the country.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.