Janine I. Rossato, Maria Carolina Gonzalez, Gênedy Apolinário, Andressa Radiske, Elis Brisa, Livia Maria Carneiro, Martín Cammarota
{"title":"Hippocampal CaMKII Regulates the Consolidation of Recognition Memory","authors":"Janine I. Rossato, Maria Carolina Gonzalez, Gênedy Apolinário, Andressa Radiske, Elis Brisa, Livia Maria Carneiro, Martín Cammarota","doi":"10.1111/ejn.70049","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Object recognition memory (ORM) is a hippocampus-dependent form of memory essential for distinguishing items and constructing episodic representations of the past. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine-specific protein kinase highly enriched in the hippocampal formation, where it acts as a memory-relevant calcium effector. We found that, in rats, training in an ORM inducing learning task rapidly increased CaMKII autophosphorylation in the CA1 region of the dorsal hippocampus. Moreover, early post-acquisition intra-dorsal CA1 injection of the substrate-competitive CaMKII inhibitor AIP impaired long-term ORM without affecting short-term ORM or previously consolidated ORMs. The amnesia induced by AIP was replicated by the calmodulin-competitive CaMKII inhibitor KN93, but not by the inactive analogues of either KN93 or AIP. Notably, these effects occurred regardless of the subject's sex and age or the time of day when learning took place. Together, our findings indicate that hippocampal CaMKII activity is necessary shortly after training for the normal consolidation of ORM.</p>\n </div>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Object recognition memory (ORM) is a hippocampus-dependent form of memory essential for distinguishing items and constructing episodic representations of the past. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine-specific protein kinase highly enriched in the hippocampal formation, where it acts as a memory-relevant calcium effector. We found that, in rats, training in an ORM inducing learning task rapidly increased CaMKII autophosphorylation in the CA1 region of the dorsal hippocampus. Moreover, early post-acquisition intra-dorsal CA1 injection of the substrate-competitive CaMKII inhibitor AIP impaired long-term ORM without affecting short-term ORM or previously consolidated ORMs. The amnesia induced by AIP was replicated by the calmodulin-competitive CaMKII inhibitor KN93, but not by the inactive analogues of either KN93 or AIP. Notably, these effects occurred regardless of the subject's sex and age or the time of day when learning took place. Together, our findings indicate that hippocampal CaMKII activity is necessary shortly after training for the normal consolidation of ORM.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.