Yuwen Zhang, Zhiqiu Ye, Enfei Xiang, Peizhan Chen, Xuqian Fang
{"title":"Effect of Growth Hormone on Branched-Chain Amino Acids Catabolism in Males With Hypopituitarism","authors":"Yuwen Zhang, Zhiqiu Ye, Enfei Xiang, Peizhan Chen, Xuqian Fang","doi":"10.1111/jcmm.70451","DOIUrl":null,"url":null,"abstract":"<p>To investigate the impact of growth hormone (GH) on branched-chain amino acids (BCAAs) catabolism in males with hypopituitarism, we measured the concentration of amino acids in 133 males with hypopituitarism and 90 age-matched healthy controls using untargeted metabolome. A rat model of hypopituitarism was established through hypophysectomy, followed by recombinant human GH (rhGH) intervention. Targeted metabolomics and label-free quantitative phosphoproteomics were utilised to assess amino acid levels in rats and explore the mechanisms of GH's effect on BCAA catabolism. Hypopituitarism exhibited elevated concentrations of BCAAs, which correlated positively with triglyceride, fasting insulin and HOMA-IR. The BCAAs were significantly elevated following hypophysectomy and were substantially reduced upon rhGH intervention. Phosphorylation proteomics analysis in liver tissues revealed that differentially expressed phosphoproteins (DEPPs) after GH treatment were predominantly involved in ‘RNA metabolic process’, ‘Diseases of signal transduction by growth factor receptors’ and ‘BCAAs degradation’. Notably, 12 proteins in the BCAA degradation pathway showed altered phosphorylation without whole protein changes. Importantly, the expression or phosphorylation modification of BCKDH, BCATs and MuRF1 were restored through rhGH intervention. Hypopituitarism exhibits elevated levels of circulating BCAAs. The increased circulating BCAAs in hypopituitarism may result from enhanced MuRF1-mediated muscle proteolysis, which greatly exceeds the BCAA degradation capacity. This study provides valuable insights into the effects of GH on BCAA catabolism at the scale of the proteomics level.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 5","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70451","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the impact of growth hormone (GH) on branched-chain amino acids (BCAAs) catabolism in males with hypopituitarism, we measured the concentration of amino acids in 133 males with hypopituitarism and 90 age-matched healthy controls using untargeted metabolome. A rat model of hypopituitarism was established through hypophysectomy, followed by recombinant human GH (rhGH) intervention. Targeted metabolomics and label-free quantitative phosphoproteomics were utilised to assess amino acid levels in rats and explore the mechanisms of GH's effect on BCAA catabolism. Hypopituitarism exhibited elevated concentrations of BCAAs, which correlated positively with triglyceride, fasting insulin and HOMA-IR. The BCAAs were significantly elevated following hypophysectomy and were substantially reduced upon rhGH intervention. Phosphorylation proteomics analysis in liver tissues revealed that differentially expressed phosphoproteins (DEPPs) after GH treatment were predominantly involved in ‘RNA metabolic process’, ‘Diseases of signal transduction by growth factor receptors’ and ‘BCAAs degradation’. Notably, 12 proteins in the BCAA degradation pathway showed altered phosphorylation without whole protein changes. Importantly, the expression or phosphorylation modification of BCKDH, BCATs and MuRF1 were restored through rhGH intervention. Hypopituitarism exhibits elevated levels of circulating BCAAs. The increased circulating BCAAs in hypopituitarism may result from enhanced MuRF1-mediated muscle proteolysis, which greatly exceeds the BCAA degradation capacity. This study provides valuable insights into the effects of GH on BCAA catabolism at the scale of the proteomics level.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.