Geospatial and Linguistic Analysis of Twitter Behavioral Trends: Examining the Impact of Socioeconomic Development on Social Media Use

IF 4.3 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Shahab Saquib Sohail, Mohammad Muzammil Khan, Dag Øivind Madsen, M. Afshar Alam, Reyazur Rashid Irshad
{"title":"Geospatial and Linguistic Analysis of Twitter Behavioral Trends: Examining the Impact of Socioeconomic Development on Social Media Use","authors":"Shahab Saquib Sohail,&nbsp;Mohammad Muzammil Khan,&nbsp;Dag Øivind Madsen,&nbsp;M. Afshar Alam,&nbsp;Reyazur Rashid Irshad","doi":"10.1155/hbe2/1376983","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an analysis of Twitter (now X), one of the largest social media platforms, aimed at exploring behavioral trends. The objective of this study is to examine geographical and language differences, frequent user patterns, and contributing countries on Twitter. Utilizing a dataset comprising 49,945,240 tweets from 12,845,715 users across 237 countries and 64 languages, we investigate the relationship between human development indices and tweet generation rates. Our findings reveal that countries with higher human development indices tend to generate more tweets, supporting theories of social change and cultural evolution. Additionally, we identify notable linguistic trends, with users predominantly tweeting in native languages, except in countries like India, where English dominates despite linguistic diversity. We also observe that a select group of countries, particularly the United States, accounts for a significant portion of retweets, highlighting retweeting as a widespread behavior in contrast to original tweet creation. These insights contribute to a broader understanding of user behavior on Twitter and provide a nuanced view of the interplay between socioeconomic factors and digital engagement on a global scale.</p>","PeriodicalId":36408,"journal":{"name":"Human Behavior and Emerging Technologies","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/hbe2/1376983","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Behavior and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/hbe2/1376983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an analysis of Twitter (now X), one of the largest social media platforms, aimed at exploring behavioral trends. The objective of this study is to examine geographical and language differences, frequent user patterns, and contributing countries on Twitter. Utilizing a dataset comprising 49,945,240 tweets from 12,845,715 users across 237 countries and 64 languages, we investigate the relationship between human development indices and tweet generation rates. Our findings reveal that countries with higher human development indices tend to generate more tweets, supporting theories of social change and cultural evolution. Additionally, we identify notable linguistic trends, with users predominantly tweeting in native languages, except in countries like India, where English dominates despite linguistic diversity. We also observe that a select group of countries, particularly the United States, accounts for a significant portion of retweets, highlighting retweeting as a widespread behavior in contrast to original tweet creation. These insights contribute to a broader understanding of user behavior on Twitter and provide a nuanced view of the interplay between socioeconomic factors and digital engagement on a global scale.

Abstract Image

推特行为趋势的地理空间和语言分析:检验社会经济发展对社交媒体使用的影响
本文对最大的社交媒体平台之一Twitter(现为X)进行了分析,旨在探索行为趋势。这项研究的目的是检查地理和语言的差异,频繁的用户模式,并在Twitter上贡献国家。我们利用由来自237个国家和64种语言的12,845,715名用户的49,945,240条推文组成的数据集,研究了人类发展指数与推文生成率之间的关系。我们的研究结果表明,人类发展指数较高的国家往往会产生更多的推文,这支持了社会变革和文化进化的理论。此外,我们发现了显著的语言趋势,用户主要使用母语发推文,除了印度等国家,尽管语言多样性,英语仍占主导地位。我们还观察到,一些精选的国家,特别是美国,占了转发的很大一部分,这表明转发是一种与原始tweet创建相反的普遍行为。这些见解有助于更广泛地理解Twitter上的用户行为,并提供了全球范围内社会经济因素与数字参与度之间相互作用的细致视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Behavior and Emerging Technologies
Human Behavior and Emerging Technologies Social Sciences-Social Sciences (all)
CiteScore
17.20
自引率
8.70%
发文量
73
期刊介绍: Human Behavior and Emerging Technologies is an interdisciplinary journal dedicated to publishing high-impact research that enhances understanding of the complex interactions between diverse human behavior and emerging digital technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信