Rapid system prototype-based physical simulation platforms for power systems with high penetration of inverter-based resources

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2025-02-07 DOI:10.1049/hve2.12520
Wei Yao, Yimin Ruan, Yuying Chen, Hongyu Zhou, Jinyu Wen, Meng Zhou, Wenping Zuo
{"title":"Rapid system prototype-based physical simulation platforms for power systems with high penetration of inverter-based resources","authors":"Wei Yao,&nbsp;Yimin Ruan,&nbsp;Yuying Chen,&nbsp;Hongyu Zhou,&nbsp;Jinyu Wen,&nbsp;Meng Zhou,&nbsp;Wenping Zuo","doi":"10.1049/hve2.12520","DOIUrl":null,"url":null,"abstract":"<p>The traditional power system dominated by synchronous generators is gradually evolving into a power system with high penetration of inverter-based resources (IBRs). In this paper, the new characteristics that arise from the high penetration of IBRs in power systems are reviewed. In light of these characteristics, current simulation technologies are inadequate and new requirements for the simulation platforms have been proposed. In response, this paper introduces the rapid system prototype (RSP)-based physical simulation platforms, which include the digital simulator, the rapid prototype controller, and the rapid object-controlled prototype. RSP addresses the time-consuming and labour-intensive shortcomings of traditional simulation techniques and meets the rapid evolution needs of the power system with high penetration of IBRs. Compared with existing simulation platforms, RSP is a more suitable platform for the physical simulation of power systems with high penetration of IBRs. Using the modular multilevel converter-based high-voltage direct current as a case study, a novel physical simulation platform for power systems based on RSP is constructed. Experimental results demonstrate that the RSP concept and technology can establish an enterprise-level simulation environment and engineering practice platform. Moreover, it can provide realistic and flexible simulations of various characteristics of power systems with high penetration of IBRs.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 1","pages":"3-16"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12520","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12520","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional power system dominated by synchronous generators is gradually evolving into a power system with high penetration of inverter-based resources (IBRs). In this paper, the new characteristics that arise from the high penetration of IBRs in power systems are reviewed. In light of these characteristics, current simulation technologies are inadequate and new requirements for the simulation platforms have been proposed. In response, this paper introduces the rapid system prototype (RSP)-based physical simulation platforms, which include the digital simulator, the rapid prototype controller, and the rapid object-controlled prototype. RSP addresses the time-consuming and labour-intensive shortcomings of traditional simulation techniques and meets the rapid evolution needs of the power system with high penetration of IBRs. Compared with existing simulation platforms, RSP is a more suitable platform for the physical simulation of power systems with high penetration of IBRs. Using the modular multilevel converter-based high-voltage direct current as a case study, a novel physical simulation platform for power systems based on RSP is constructed. Experimental results demonstrate that the RSP concept and technology can establish an enterprise-level simulation environment and engineering practice platform. Moreover, it can provide realistic and flexible simulations of various characteristics of power systems with high penetration of IBRs.

Abstract Image

基于快速系统原型的电力系统物理仿真平台,具有高渗透的逆变器资源
以同步发电机为主的传统电力系统正逐步向逆变器资源高渗透的电力系统发展。本文综述了ibr在电力系统中的高渗透所产生的新特性。针对这些特点,现有仿真技术的不足,对仿真平台提出了新的要求。为此,本文介绍了基于快速系统原型(RSP)的物理仿真平台,包括数字模拟器、快速原型控制器和快速对象控制原型。RSP解决了传统仿真技术耗时费力的缺点,满足了ibr高渗透率电力系统快速发展的需要。与现有的仿真平台相比,RSP是一个更适合高ibr渗透率电力系统物理仿真的平台。以基于模块化多电平变换器的高压直流为例,构建了一种基于RSP的电力系统物理仿真平台。实验结果表明,RSP概念和技术可以建立企业级仿真环境和工程实践平台。此外,该方法还能对高穿深ibr电力系统的各种特性进行真实、灵活的仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信