GTOC12: Methods and results from the National University of Defense Technology

IF 2.7 1区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Yu Zhang, Yuehe Zhu, Jiacheng Zhang, Hanwei Wang, Ke Jin, Lifeng Fu
{"title":"GTOC12: Methods and results from the National University of Defense Technology","authors":"Yu Zhang,&nbsp;Yuehe Zhu,&nbsp;Jiacheng Zhang,&nbsp;Hanwei Wang,&nbsp;Ke Jin,&nbsp;Lifeng Fu","doi":"10.1007/s42064-024-0247-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the solutions and results of the 12th edition of the Global Trajectory Optimization Competition (GTOC12) of the National University of Defense and Technology. To address the complex interstellar mining problem proposed by GTOC12, our solution is divided into two stages. The first stage focuses on preliminary work, including the target selection, the establishment of departure and return databases, and the development of methods to estimate transfer costs, with the aim of enhancing planning efficiency during the global planning phase. The second stage involves trajectory optimization for multiple mining ships, including single-mining-ship trajectory optimization and a multiship iterative process. For single-mining-ship trajectory optimization, the method involves three steps: first, employ a heuristic method for planning the first rendezvous sequences; second, utilize an ant colony optimization (ACO) algorithm for planning the second rendezvous sequences; and third, apply a differential evolution (DE) algorithm alongside an indirect method to refine rendezvous times and low-thrust trajectories. Through the implementation of a multiship iterative strategy, the team accomplished trajectory optimization for multiple mining ships that met the constraints. The final score submitted by the team was 15,160.946, which achieved the sixth place in the competition.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":52291,"journal":{"name":"Astrodynamics","volume":"9 1","pages":"129 - 141"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42064-024-0247-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrodynamics","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42064-024-0247-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the solutions and results of the 12th edition of the Global Trajectory Optimization Competition (GTOC12) of the National University of Defense and Technology. To address the complex interstellar mining problem proposed by GTOC12, our solution is divided into two stages. The first stage focuses on preliminary work, including the target selection, the establishment of departure and return databases, and the development of methods to estimate transfer costs, with the aim of enhancing planning efficiency during the global planning phase. The second stage involves trajectory optimization for multiple mining ships, including single-mining-ship trajectory optimization and a multiship iterative process. For single-mining-ship trajectory optimization, the method involves three steps: first, employ a heuristic method for planning the first rendezvous sequences; second, utilize an ant colony optimization (ACO) algorithm for planning the second rendezvous sequences; and third, apply a differential evolution (DE) algorithm alongside an indirect method to refine rendezvous times and low-thrust trajectories. Through the implementation of a multiship iterative strategy, the team accomplished trajectory optimization for multiple mining ships that met the constraints. The final score submitted by the team was 15,160.946, which achieved the sixth place in the competition.

GTOC12:方法和结果来自国防科技大学
本文介绍了国防科技大学第12届全球轨迹优化竞赛(GTOC12)的解决方案和结果。为了解决GTOC12提出的复杂星际采矿问题,我们的解决方案分为两个阶段。第一阶段的重点是初步工作,包括目标的选择、出发和返回数据库的建立以及估计转移费用的方法的发展,目的是在全球规划阶段提高规划效率。第二阶段为多矿船轨迹优化,包括单矿船轨迹优化和多矿船迭代过程。对于单船采矿轨迹优化,该方法分为三个步骤:首先,采用启发式方法规划首次交会序列;其次,利用蚁群优化算法规划二次交会序列;第三,应用微分进化(DE)算法和间接方法来优化交会时间和低推力轨迹。通过多船迭代策略的实现,团队完成了满足约束条件的多艘采矿船的轨迹优化。该队最终提交的成绩为15,160.946,获得比赛第六名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrodynamics
Astrodynamics Engineering-Aerospace Engineering
CiteScore
6.90
自引率
34.40%
发文量
32
期刊介绍: Astrodynamics is a peer-reviewed international journal that is co-published by Tsinghua University Press and Springer. The high-quality peer-reviewed articles of original research, comprehensive review, mission accomplishments, and technical comments in all fields of astrodynamics will be given priorities for publication. In addition, related research in astronomy and astrophysics that takes advantages of the analytical and computational methods of astrodynamics is also welcome. Astrodynamics would like to invite all of the astrodynamics specialists to submit their research articles to this new journal. Currently, the scope of the journal includes, but is not limited to:Fundamental orbital dynamicsSpacecraft trajectory optimization and space mission designOrbit determination and prediction, autonomous orbital navigationSpacecraft attitude determination, control, and dynamicsGuidance and control of spacecraft and space robotsSpacecraft constellation design and formation flyingModelling, analysis, and optimization of innovative space systemsNovel concepts for space engineering and interdisciplinary applicationsThe effort of the Editorial Board will be ensuring the journal to publish novel researches that advance the field, and will provide authors with a productive, fair, and timely review experience. It is our sincere hope that all researchers in the field of astrodynamics will eagerly access this journal, Astrodynamics, as either authors or readers, making it an illustrious journal that will shape our future space explorations and discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信