Nanao/organocatalyat SiO2/4-(2-Aminoethyl)-morpholine as a new, reusable, and efficacious catalyst for the synthesis of polyhydroquinolines derivatives and antibacterially active evaluation

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Leila Amiri-Zirtol, Zahra Karimi, Javad Farahbakhsh, Ahmad Gholami, Seyedeh Narjes Abootalebi
{"title":"Nanao/organocatalyat SiO2/4-(2-Aminoethyl)-morpholine as a new, reusable, and efficacious catalyst for the synthesis of polyhydroquinolines derivatives and antibacterially active evaluation","authors":"Leila Amiri-Zirtol,&nbsp;Zahra Karimi,&nbsp;Javad Farahbakhsh,&nbsp;Ahmad Gholami,&nbsp;Seyedeh Narjes Abootalebi","doi":"10.1186/s13065-025-01403-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a new nanocomposite comprising 4-(2-Aminoethyl)-morpholine, an organic catalyst, was prepared on the surface of silica. The absence of metal in the catalyst structure contributes to its environmental friendliness. This novel nanocatalyst was used for multi-component reactions (MCRs). Having a nano size for the composite enhances the contact between the raw materials and the catalytic surface, leading to significant advancement in the reaction. The synthesized composite was identified and evaluated using FT-IR, EDX, EDX-Mapping, TGA, XRD, BET, TEM, and FE-SEM analysis. The characteristic analysis confirmed the synthesis of both nano-silica/4-(2-Aminoethyl)-morpholine catalyst and polyhydroquinoline. The composite’s catalytic properties for synthesizing some polyhydroquinoline derivatives were investigated, yielding promising and remarkable results with high 95% yields and short reaction times. The antibacterial properties of the synthesized compounds were also examined against four types of pathogenic bacteria. The highest inhibitory effect was attributed to the compound Ethyl-4-(3-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate exhibited the highest antibacterial properties.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01403-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01403-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a new nanocomposite comprising 4-(2-Aminoethyl)-morpholine, an organic catalyst, was prepared on the surface of silica. The absence of metal in the catalyst structure contributes to its environmental friendliness. This novel nanocatalyst was used for multi-component reactions (MCRs). Having a nano size for the composite enhances the contact between the raw materials and the catalytic surface, leading to significant advancement in the reaction. The synthesized composite was identified and evaluated using FT-IR, EDX, EDX-Mapping, TGA, XRD, BET, TEM, and FE-SEM analysis. The characteristic analysis confirmed the synthesis of both nano-silica/4-(2-Aminoethyl)-morpholine catalyst and polyhydroquinoline. The composite’s catalytic properties for synthesizing some polyhydroquinoline derivatives were investigated, yielding promising and remarkable results with high 95% yields and short reaction times. The antibacterial properties of the synthesized compounds were also examined against four types of pathogenic bacteria. The highest inhibitory effect was attributed to the compound Ethyl-4-(3-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate exhibited the highest antibacterial properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信