H. Benzehoua, F. Saad, M. Bayraktar, S. Chatzinotas, A. Belafhal
{"title":"Analysis of the average intensity of general model vortex higher-order cosh-Gaussian beams propagating through an oceanic turbulence medium","authors":"H. Benzehoua, F. Saad, M. Bayraktar, S. Chatzinotas, A. Belafhal","doi":"10.1007/s11082-025-08073-8","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze the propagation characteristics of a General Model vortex Higher-order cosh-Gaussian beam (GMvHchGB) in a turbulent oceanic medium. The beam’s intensity expression is derived using the Huygens–Fresnel integral formula. Through numerical simulations, the average intensity distribution is evaluated, focusing on the effects of oceanic turbulence and the incident beam parameters. The results indicate that the received intensity depends on the initial parameters and the oceanic conditions. Notably, under stronger oceanic turbulence, the GMvHchGB a transformation, losing its initial structure and quickly evolving into a Gaussian profile. This transformation is influenced by a reduction in the dissipation rate of turbulent kinetic energy per unit mass or an increase in the dissipation rate of mean-square temperature and the ratio of temperature to salinity fluctuation. Additionally, the initial beam parameters significantly affect the GMvHchGB’s intensity in the oceanic turbulent medium. These findings offer insights into potential applications in underwater optical communication between ships, divers, and submarines, as well as imaging systems.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08073-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the propagation characteristics of a General Model vortex Higher-order cosh-Gaussian beam (GMvHchGB) in a turbulent oceanic medium. The beam’s intensity expression is derived using the Huygens–Fresnel integral formula. Through numerical simulations, the average intensity distribution is evaluated, focusing on the effects of oceanic turbulence and the incident beam parameters. The results indicate that the received intensity depends on the initial parameters and the oceanic conditions. Notably, under stronger oceanic turbulence, the GMvHchGB a transformation, losing its initial structure and quickly evolving into a Gaussian profile. This transformation is influenced by a reduction in the dissipation rate of turbulent kinetic energy per unit mass or an increase in the dissipation rate of mean-square temperature and the ratio of temperature to salinity fluctuation. Additionally, the initial beam parameters significantly affect the GMvHchGB’s intensity in the oceanic turbulent medium. These findings offer insights into potential applications in underwater optical communication between ships, divers, and submarines, as well as imaging systems.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.