DOPA Decarboxylase (DDC) in Pacific Oysters: Characterization and Role in Tyrosine Metabolism and Melanogenesis

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Kunyin Jiang, Hong Yu, Lingfeng Kong, Shikai Liu, Shaojun Du, Qi Li
{"title":"DOPA Decarboxylase (DDC) in Pacific Oysters: Characterization and Role in Tyrosine Metabolism and Melanogenesis","authors":"Kunyin Jiang,&nbsp;Hong Yu,&nbsp;Lingfeng Kong,&nbsp;Shikai Liu,&nbsp;Shaojun Du,&nbsp;Qi Li","doi":"10.1007/s10126-025-10439-8","DOIUrl":null,"url":null,"abstract":"<div><p>DOPA decarboxylase (DDC) plays a crucial role in the physiological functions of animals by participating in the dopaminergic system. However, the functions of DDC in shellfish remain poorly understood. The Pacific oyster (<i>Crassostrea gigas</i>) is an extensively cultivated shellfish. In this study, we characterized a <i>DDC</i> gene, designated <i>CgDDC</i>, from <i>C. gigas</i>. The <i>CgDDC</i> gene encodes a protein that contains a Pyridoxal_deC domain, which features specific binding sites for pyridoxal-5’-phosphate (PLP) and L-DOPA. <i>Cg</i>DDC exhibits a significantly higher expression level in the black shell oyster strain than the white strain. In vitro enzymatic reaction assays demonstrated that <i>Cg</i>DDC catalyzes the conversion of L-DOPA to dopamine. In vivo experiments revealed that inhibiting <i>Cg</i>DDC activity reduced the expression of genes associated with tyrosine metabolism. Furthermore, the knockdown of <i>CgDDC</i> caused a decline in cAMP level and reduced transcription of genes involved in the cAMP-mediated melanogenesis. Additionally, treatment with L-α-DOPA inhibited <i>Cg</i>DDC enzyme activity and cAMP-mediated melanogenesis; however, dopamine supplementation countered this inhibition, maintaining gene expression and melanin content at baseline levels. Collectively, our findings suggest that <i>Cg</i>DDC is intricately involved in regulating tyrosine metabolism and melanogenesis in <i>C. gigas</i>.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-025-10439-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DOPA decarboxylase (DDC) plays a crucial role in the physiological functions of animals by participating in the dopaminergic system. However, the functions of DDC in shellfish remain poorly understood. The Pacific oyster (Crassostrea gigas) is an extensively cultivated shellfish. In this study, we characterized a DDC gene, designated CgDDC, from C. gigas. The CgDDC gene encodes a protein that contains a Pyridoxal_deC domain, which features specific binding sites for pyridoxal-5’-phosphate (PLP) and L-DOPA. CgDDC exhibits a significantly higher expression level in the black shell oyster strain than the white strain. In vitro enzymatic reaction assays demonstrated that CgDDC catalyzes the conversion of L-DOPA to dopamine. In vivo experiments revealed that inhibiting CgDDC activity reduced the expression of genes associated with tyrosine metabolism. Furthermore, the knockdown of CgDDC caused a decline in cAMP level and reduced transcription of genes involved in the cAMP-mediated melanogenesis. Additionally, treatment with L-α-DOPA inhibited CgDDC enzyme activity and cAMP-mediated melanogenesis; however, dopamine supplementation countered this inhibition, maintaining gene expression and melanin content at baseline levels. Collectively, our findings suggest that CgDDC is intricately involved in regulating tyrosine metabolism and melanogenesis in C. gigas.

太平洋牡蛎中的 DOPA 脱羧酶 (DDC):酪氨酸代谢和黑色素生成中的特征和作用
多巴脱羧酶(DOPA decarboxylase, DDC)通过参与多巴胺能系统,在动物的生理功能中起着至关重要的作用。然而,DDC在贝类中的功能仍然知之甚少。太平洋牡蛎(长牡蛎)是一种广泛养殖的贝类。在这项研究中,我们从C. gigas中鉴定了一个DDC基因,命名为cgdc。cddc基因编码一种含有Pyridoxal_deC结构域的蛋白,该结构域具有pyridoxal-5 ' -phosphate (PLP)和L-DOPA的特异性结合位点。CgDDC在黑壳牡蛎品系中的表达量显著高于白壳牡蛎品系。体外酶促反应实验表明,CgDDC可催化左旋多巴转化为多巴胺。体内实验表明,抑制CgDDC活性可降低酪氨酸代谢相关基因的表达。此外,CgDDC的敲低导致cAMP水平下降,cAMP介导的黑素形成相关基因的转录减少。此外,L-α-DOPA处理可抑制CgDDC酶活性和camp介导的黑色素生成;然而,多巴胺的补充抵消了这种抑制,将基因表达和黑色素含量维持在基线水平。总之,我们的研究结果表明,cgdc复杂地参与调节巨噬线虫的酪氨酸代谢和黑色素生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Biotechnology
Marine Biotechnology 工程技术-海洋与淡水生物学
CiteScore
4.80
自引率
3.30%
发文量
95
审稿时长
2 months
期刊介绍: Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信