Enhanced anti-corrosion and morphological properties of nano-Ti polymer coatings with graphene additives

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Bo Wang, Tao Wan, Shicheng Wei, Yujiang Wang, Wei Huang, Yi Liang, Junqi Li
{"title":"Enhanced anti-corrosion and morphological properties of nano-Ti polymer coatings with graphene additives","authors":"Bo Wang,&nbsp;Tao Wan,&nbsp;Shicheng Wei,&nbsp;Yujiang Wang,&nbsp;Wei Huang,&nbsp;Yi Liang,&nbsp;Junqi Li","doi":"10.1007/s11051-025-06222-4","DOIUrl":null,"url":null,"abstract":"<div><p>Corrosion is a widespread issue affecting many aspects of daily life. To further improve the anti-corrosion performance of nano-Ti polymer coatings from our previous research, graphene slurry is filled to modify nano-Ti epoxy resin coatings. The structure, anti-permeability, anti-corrosion, and anti-wear properties of nano-Ti polymer functional coatings with different graphene slurry were systemically investigated by field emission scanning microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), immersion test, electrochemical measurements, and wear test. The FE-SEM results showed that graphene can be well dispersed in nano-Ti polymer coating when the graphene content is 0.5 wt%. Furthermore, the results showed that the addition of graphene can improve the anti-permeability, anti-corrosion, and anti-wear properties of nano-Ti polymer coatings. The water uptake of nano-Ti polymer/graphene functional coatings was reduced from 2.4 to 0.05%. The friction coefficient of the coatings also decreased from 0.53 to 0.22 due to the good dispersion of graphene slurry. The corrosion resistance of the functional coatings decreased with increasing graphene slurry. Nano-Ti polymer/graphene functional coatings showed optimal comprehensive performance and anti-corrosion performance as the graphene content was 0.5 wt%; the appropriate amount of graphene slurry can effectively improve the anti-corrosion performance of the nano-Ti polymer coating.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06222-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Corrosion is a widespread issue affecting many aspects of daily life. To further improve the anti-corrosion performance of nano-Ti polymer coatings from our previous research, graphene slurry is filled to modify nano-Ti epoxy resin coatings. The structure, anti-permeability, anti-corrosion, and anti-wear properties of nano-Ti polymer functional coatings with different graphene slurry were systemically investigated by field emission scanning microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), immersion test, electrochemical measurements, and wear test. The FE-SEM results showed that graphene can be well dispersed in nano-Ti polymer coating when the graphene content is 0.5 wt%. Furthermore, the results showed that the addition of graphene can improve the anti-permeability, anti-corrosion, and anti-wear properties of nano-Ti polymer coatings. The water uptake of nano-Ti polymer/graphene functional coatings was reduced from 2.4 to 0.05%. The friction coefficient of the coatings also decreased from 0.53 to 0.22 due to the good dispersion of graphene slurry. The corrosion resistance of the functional coatings decreased with increasing graphene slurry. Nano-Ti polymer/graphene functional coatings showed optimal comprehensive performance and anti-corrosion performance as the graphene content was 0.5 wt%; the appropriate amount of graphene slurry can effectively improve the anti-corrosion performance of the nano-Ti polymer coating.

石墨烯增强纳米钛聚合物涂层的抗腐蚀性能和形态性能
腐蚀是一个广泛存在的问题,影响着日常生活的许多方面。为了进一步提高我们之前研究的纳米ti聚合物涂料的防腐性能,我们在纳米ti环氧树脂涂料中填充石墨烯浆。采用场发射扫描显微镜(FE-SEM)、傅里叶变换红外光谱(FT-IR)、浸没测试、电化学测试和磨损测试等方法,系统研究了不同石墨烯浆料纳米ti聚合物功能涂层的结构、抗渗透、抗腐蚀和抗磨性能。FE-SEM结果表明,当石墨烯含量为0.5 wt%时,石墨烯可以很好地分散在纳米ti聚合物涂层中。此外,石墨烯的加入可以提高纳米ti聚合物涂层的抗渗透、抗腐蚀和抗磨损性能。纳米钛聚合物/石墨烯功能涂层的吸水率从2.4降低到0.05%。由于石墨烯浆液的良好分散,涂层的摩擦系数也从0.53降低到0.22。随着石墨烯浆料的增加,功能涂层的耐腐蚀性降低。当石墨烯含量为0.5 wt%时,纳米ti聚合物/石墨烯功能涂层的综合性能和防腐性能最佳;适量的石墨烯浆料可有效提高纳米ti聚合物涂层的防腐性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信