Excellent CMAS Corrosion Resistance of a Novel Multicomponent High-Entropy Rare Earth (Yb0.25Sc0.25Er0.25Tm0.25)2Si2O7 Disilicate

IF 2.1 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Sehreish Abrar, Faisal Nazeer, Abdul Malik
{"title":"Excellent CMAS Corrosion Resistance of a Novel Multicomponent High-Entropy Rare Earth (Yb0.25Sc0.25Er0.25Tm0.25)2Si2O7 Disilicate","authors":"Sehreish Abrar,&nbsp;Faisal Nazeer,&nbsp;Abdul Malik","doi":"10.1007/s11085-025-10330-w","DOIUrl":null,"url":null,"abstract":"<div><p>A novel high-entropy rare earth (Yb<sub>0.25</sub>Sc<sub>0.25</sub>Er<sub>0.25</sub>Tm<sub>0.25</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> or 4(YSET)<sub>0.25</sub> disilicate was fabricated through a solid-solution method to protect the underlying SiC substrate from harsh environment at elevated temperature. XRD analysis showed that the newly fabricated 4(YSET)<sub>0.25</sub> exactly matched with the constituent base Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> having a single stable <i>β</i> phase. The microstructure analysis showed that the powder was uniformly mixed. A CMAS exposure test was done to check the corrosion properties of 4(YSET)<sub>0.25</sub> at 1300 °C for 4 h and 48 h. The 4(YSET)<sub>0.25</sub> showed better resistance against CMAS after 48 h at 1300 °C, and a negligible amount of Ca was able to penetrate toward the 4(YSET)<sub>0.25</sub> substrate. The overall performance of 4(YSET)<sub>0.25</sub> against CMAS was far better than their single constituent elements.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"102 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-025-10330-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A novel high-entropy rare earth (Yb0.25Sc0.25Er0.25Tm0.25)2Si2O7 or 4(YSET)0.25 disilicate was fabricated through a solid-solution method to protect the underlying SiC substrate from harsh environment at elevated temperature. XRD analysis showed that the newly fabricated 4(YSET)0.25 exactly matched with the constituent base Yb2Si2O7 having a single stable β phase. The microstructure analysis showed that the powder was uniformly mixed. A CMAS exposure test was done to check the corrosion properties of 4(YSET)0.25 at 1300 °C for 4 h and 48 h. The 4(YSET)0.25 showed better resistance against CMAS after 48 h at 1300 °C, and a negligible amount of Ca was able to penetrate toward the 4(YSET)0.25 substrate. The overall performance of 4(YSET)0.25 against CMAS was far better than their single constituent elements.

新型多组分高熵稀土(Yb0.25Sc0.25Er0.25Tm0.25)2Si2O7二硅酸盐优异的CMAS耐蚀性
采用固溶法制备了一种新型高熵稀土(Yb0.25Sc0.25Er0.25Tm0.25)2Si2O7或4(YSET)0.25二硅酸盐,以保护SiC衬底免受高温恶劣环境的影响。XRD分析表明,新制备的4(YSET)0.25与组成基Yb2Si2O7完全匹配,具有单一稳定的β相。显微组织分析表明,粉末混合均匀。在1300℃下,4(YSET)0.25的腐蚀性能在1300℃下持续4小时和48小时。在1300℃下,4(YSET)0.25在48小时后表现出更好的抗CMAS腐蚀性能,并且少量的Ca能够渗透到4(YSET)0.25的基体上。4(YSET)0.25对CMAS的综合性能远优于其单一组成元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oxidation of Metals
Oxidation of Metals 工程技术-冶金工程
CiteScore
5.10
自引率
9.10%
发文量
47
审稿时长
2.2 months
期刊介绍: Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信