{"title":"Excellent CMAS Corrosion Resistance of a Novel Multicomponent High-Entropy Rare Earth (Yb0.25Sc0.25Er0.25Tm0.25)2Si2O7 Disilicate","authors":"Sehreish Abrar, Faisal Nazeer, Abdul Malik","doi":"10.1007/s11085-025-10330-w","DOIUrl":null,"url":null,"abstract":"<div><p>A novel high-entropy rare earth (Yb<sub>0.25</sub>Sc<sub>0.25</sub>Er<sub>0.25</sub>Tm<sub>0.25</sub>)<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> or 4(YSET)<sub>0.25</sub> disilicate was fabricated through a solid-solution method to protect the underlying SiC substrate from harsh environment at elevated temperature. XRD analysis showed that the newly fabricated 4(YSET)<sub>0.25</sub> exactly matched with the constituent base Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub> having a single stable <i>β</i> phase. The microstructure analysis showed that the powder was uniformly mixed. A CMAS exposure test was done to check the corrosion properties of 4(YSET)<sub>0.25</sub> at 1300 °C for 4 h and 48 h. The 4(YSET)<sub>0.25</sub> showed better resistance against CMAS after 48 h at 1300 °C, and a negligible amount of Ca was able to penetrate toward the 4(YSET)<sub>0.25</sub> substrate. The overall performance of 4(YSET)<sub>0.25</sub> against CMAS was far better than their single constituent elements.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"102 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-025-10330-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A novel high-entropy rare earth (Yb0.25Sc0.25Er0.25Tm0.25)2Si2O7 or 4(YSET)0.25 disilicate was fabricated through a solid-solution method to protect the underlying SiC substrate from harsh environment at elevated temperature. XRD analysis showed that the newly fabricated 4(YSET)0.25 exactly matched with the constituent base Yb2Si2O7 having a single stable β phase. The microstructure analysis showed that the powder was uniformly mixed. A CMAS exposure test was done to check the corrosion properties of 4(YSET)0.25 at 1300 °C for 4 h and 48 h. The 4(YSET)0.25 showed better resistance against CMAS after 48 h at 1300 °C, and a negligible amount of Ca was able to penetrate toward the 4(YSET)0.25 substrate. The overall performance of 4(YSET)0.25 against CMAS was far better than their single constituent elements.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.