{"title":"Deformation and mechanical properties analysis of metallic hollow spheres under quasi-static compression","authors":"Qi Gao, Changyun Li, Ling Tang, Shaoxiang Sun, Yanbo Yao, Lei Xu","doi":"10.1007/s11012-025-01945-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the deformation and mechanical behavior of metallic hollow spheres (MHSs) under quasi-static compression. Quasi-static axial compression simulations on aluminum alloy MHSs of varying diameters and wall thicknesses were conducted using ANSYS. The effects of diameter, wall thickness, and density on deformation modes, mechanical properties, and energy absorption characteristics were analyzed. The results indicate that MHSs experience three deformation stages during quasi-static compression, exhibiting both symmetric and asymmetric indentation modes. With a constant thickness-to-diameter ratio (T/D), MHSs demonstrate consistent deformation patterns and compressive strength, with load-bearing capacity influenced by both diameter and wall thickness. For a fixed diameter, wall thickness becomes the key factor determining compressive strength. Increasing wall thickness significantly enhances shell stiffness and load-bearing capacity, while reducing the risk of sidewall instability. Notably, at a T/D value of 0.03, MHSs display enhanced structural strength due to distinctive structural transformations during compression. Additionally, at a given density, MHSs with larger diameters exhibit higher load-bearing capacity, although this improvement tends to level off when density exceeds a certain threshold. The study also reveals that the initial peak load, average compression load, and energy absorption capacity of MHSs are influenced by both diameter and wall thickness, whereas energy absorption efficiency is primarily determined by the interaction between these parameters. This research provides essential theoretical support for the design and performance optimization of MHSs and offers valuable insights for applications in energy-absorbing structural design.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 2","pages":"347 - 364"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-025-01945-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the deformation and mechanical behavior of metallic hollow spheres (MHSs) under quasi-static compression. Quasi-static axial compression simulations on aluminum alloy MHSs of varying diameters and wall thicknesses were conducted using ANSYS. The effects of diameter, wall thickness, and density on deformation modes, mechanical properties, and energy absorption characteristics were analyzed. The results indicate that MHSs experience three deformation stages during quasi-static compression, exhibiting both symmetric and asymmetric indentation modes. With a constant thickness-to-diameter ratio (T/D), MHSs demonstrate consistent deformation patterns and compressive strength, with load-bearing capacity influenced by both diameter and wall thickness. For a fixed diameter, wall thickness becomes the key factor determining compressive strength. Increasing wall thickness significantly enhances shell stiffness and load-bearing capacity, while reducing the risk of sidewall instability. Notably, at a T/D value of 0.03, MHSs display enhanced structural strength due to distinctive structural transformations during compression. Additionally, at a given density, MHSs with larger diameters exhibit higher load-bearing capacity, although this improvement tends to level off when density exceeds a certain threshold. The study also reveals that the initial peak load, average compression load, and energy absorption capacity of MHSs are influenced by both diameter and wall thickness, whereas energy absorption efficiency is primarily determined by the interaction between these parameters. This research provides essential theoretical support for the design and performance optimization of MHSs and offers valuable insights for applications in energy-absorbing structural design.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.