A numerical approach for optimizing ultrawideband absorber performance with MXene multilayer metamaterials for solar engineering applications

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jusu M. Ngobeh, Vishal Sorathiya, Torki Altameem, Walid El-Shafai, Charmy Jani
{"title":"A numerical approach for optimizing ultrawideband absorber performance with MXene multilayer metamaterials for solar engineering applications","authors":"Jusu M. Ngobeh,&nbsp;Vishal Sorathiya,&nbsp;Torki Altameem,&nbsp;Walid El-Shafai,&nbsp;Charmy Jani","doi":"10.1007/s00339-025-08346-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduced advanced metamaterials for efficient solar energy harvesting. The multilayered structure explores different metallic materials, such as gold (Au), Tungsten (W), MXene, Fe, and Cu, to absorb electromagnetic waves throughout a wide range of wavelengths in the near-infrared spectrum. These materials were designed and simulated through the finite element method (FEM) method to work perfectly and harmoniously to maximize the efficient amount of solar irradiance into thermophotovoltaic cells, which can then be converted into electricity through the proposed solar absorbers. Quantitatively enhances high absorptivity on the localized metallic surface within the plasmonic resonance structure by designing and optimizing a metamaterial solar absorber of a geometrically multilayered structure. This study explores using MXene-based metamaterials (MTM) for solar energy absorption. MXene, a 2D material, can be combined with other materials, such as gold, silicon dioxide, and tungsten, to create efficient solar absorbers. These materials have specific properties that contribute to their effectiveness in capturing and converting sunlight into energy. The proposed design involves a multilayer structure with gold-based substrate metasurfaces to ensure efficient absorption at a wide angle of incident angles (60⁰). The proposed absorber can be used for the effective thermal energy harvesting solution and a wide band infrared and visible light absorber structure. The proposed results and numerical investigation can help identify suitable material geometries for effective wideband infrared/visible/UV light absorbers and thermal harvesting structures.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08346-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduced advanced metamaterials for efficient solar energy harvesting. The multilayered structure explores different metallic materials, such as gold (Au), Tungsten (W), MXene, Fe, and Cu, to absorb electromagnetic waves throughout a wide range of wavelengths in the near-infrared spectrum. These materials were designed and simulated through the finite element method (FEM) method to work perfectly and harmoniously to maximize the efficient amount of solar irradiance into thermophotovoltaic cells, which can then be converted into electricity through the proposed solar absorbers. Quantitatively enhances high absorptivity on the localized metallic surface within the plasmonic resonance structure by designing and optimizing a metamaterial solar absorber of a geometrically multilayered structure. This study explores using MXene-based metamaterials (MTM) for solar energy absorption. MXene, a 2D material, can be combined with other materials, such as gold, silicon dioxide, and tungsten, to create efficient solar absorbers. These materials have specific properties that contribute to their effectiveness in capturing and converting sunlight into energy. The proposed design involves a multilayer structure with gold-based substrate metasurfaces to ensure efficient absorption at a wide angle of incident angles (60⁰). The proposed absorber can be used for the effective thermal energy harvesting solution and a wide band infrared and visible light absorber structure. The proposed results and numerical investigation can help identify suitable material geometries for effective wideband infrared/visible/UV light absorbers and thermal harvesting structures.

一种优化太阳能工程用MXene多层超材料超宽带吸收性能的数值方法
这项研究介绍了用于高效太阳能收集的先进超材料。这种多层结构利用不同的金属材料,如金(Au)、钨(W)、MXene、铁和铜,在近红外光谱的宽波长范围内吸收电磁波。通过有限元法(FEM)对这些材料进行了设计和模拟,使其能够完美、和谐地工作,最大限度地将有效的太阳辐照量转化为热光伏电池,然后通过拟议的太阳能吸收器将其转化为电能。通过设计和优化几何多层结构的超材料太阳能吸收器,定量增强等离子体共振结构内局部金属表面的高吸收率。本研究探讨了利用基于 MXene 的超材料(MTM)吸收太阳能的问题。MXene 是一种二维材料,可与其他材料(如金、二氧化硅和钨等)结合制成高效的太阳能吸收器。这些材料具有特殊的性能,有助于它们有效地捕捉太阳光并将其转化为能量。拟议的设计采用多层结构,基底为金基元表面,以确保在宽入射角(60⁰)下的高效吸收。建议的吸收器可用于有效的热能收集解决方案以及宽带红外线和可见光吸收器结构。所提出的结果和数值研究有助于为有效的宽带红外线/可见光/紫外线吸收器和热能收集结构确定合适的材料几何形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信