Biodegradation of Hexagonal Boron Nitride Nanomaterials by Neutrophils

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Zhuomiao Liu, Jian Zhao, Liyun Yin, Kun Wang, Hao Feng, Lingzhi Li, Sicheng Xiong, Xinyue Li, Xia Liu, Yanhui Dai, Tongtao Yue, Zhenyu Wang, Baoshan Xing
{"title":"Biodegradation of Hexagonal Boron Nitride Nanomaterials by Neutrophils","authors":"Zhuomiao Liu, Jian Zhao, Liyun Yin, Kun Wang, Hao Feng, Lingzhi Li, Sicheng Xiong, Xinyue Li, Xia Liu, Yanhui Dai, Tongtao Yue, Zhenyu Wang, Baoshan Xing","doi":"10.1021/acs.est.4c13298","DOIUrl":null,"url":null,"abstract":"The biodegradation of hexagonal boron nitride (h-BN) nanomaterials by neutrophils was investigated. After incubation for 36 h, h-BN nanosheets are taken up by neutrophils, and their structure is highly disrupted, as observed via high-resolution transmission electron microscopy (HR-TEM) and confocal Raman imaging. Among the three degradation pathways, the release of neutrophil extracellular traps from neutrophils is the dominant, with myeloperoxidase (MPO) playing an important role. Molecular dynamics simulations show that MPO spontaneously attach onto h-BN surface, and leverage the active sites of MPO to form favorable contacts with h-BN to initiate the degradation. Hypochlorite produced by MPO is responsible for h-BN degradation. With the assistance of hypochlorite, B–O and N–O bonds are formed on h-BN, along with B–N bond breakage and the release of ionic boron and nitrogen based on byproduct identification and first-principle calculations. Additionally, h-BN nanosheets are significantly degraded into small pieces, and the particle concentration of h-BN with a size of 0–100 nm increases by 58.7% after degradation. Following degradation, h-BN nanosheets induce significant hemolysis of red blood cells, and exhibit higher cytotoxicity against epithelial cells. Our findings highlight the importance of considering h-BN degradation for its safe application, and demonstrate the actual risk of h-BN in biological and natural environments.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"1 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c13298","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The biodegradation of hexagonal boron nitride (h-BN) nanomaterials by neutrophils was investigated. After incubation for 36 h, h-BN nanosheets are taken up by neutrophils, and their structure is highly disrupted, as observed via high-resolution transmission electron microscopy (HR-TEM) and confocal Raman imaging. Among the three degradation pathways, the release of neutrophil extracellular traps from neutrophils is the dominant, with myeloperoxidase (MPO) playing an important role. Molecular dynamics simulations show that MPO spontaneously attach onto h-BN surface, and leverage the active sites of MPO to form favorable contacts with h-BN to initiate the degradation. Hypochlorite produced by MPO is responsible for h-BN degradation. With the assistance of hypochlorite, B–O and N–O bonds are formed on h-BN, along with B–N bond breakage and the release of ionic boron and nitrogen based on byproduct identification and first-principle calculations. Additionally, h-BN nanosheets are significantly degraded into small pieces, and the particle concentration of h-BN with a size of 0–100 nm increases by 58.7% after degradation. Following degradation, h-BN nanosheets induce significant hemolysis of red blood cells, and exhibit higher cytotoxicity against epithelial cells. Our findings highlight the importance of considering h-BN degradation for its safe application, and demonstrate the actual risk of h-BN in biological and natural environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信