Bingxin Yin, Xun Wang, Yong Liu, Junhao Fang, Wen-Xiong Wang
{"title":"How Fish Intestinal Cells Responded to Dietary Methylmercury Exposure? A Single-Cell Transcriptomic Analysis","authors":"Bingxin Yin, Xun Wang, Yong Liu, Junhao Fang, Wen-Xiong Wang","doi":"10.1016/j.envpol.2025.125967","DOIUrl":null,"url":null,"abstract":"Fish intestine is not only an important digestive and immune organ, but also serves as the first barrier to defend against methylmercury (MeHg) toxicity. Numerous studies have examined the responses of intestine to MeHg, whereas the heterogeneous responses of intestinal cells have not been addressed. In this study, the gilthead seabream were exposed to dietary MeHg, and the gene expression profiles of different intestinal cell populations were examined using scRNA-seq technique. We demonstrated that among the 14 cell types identified, enterocytes, macrophages, T cells and goblet cells were the primary target cell populations exhibiting specific responses to MeHg. Enterocytes appeared to play the most important role in the MeHg transport across the intestinal epithelium as well as intracellular storage. The immune pathways of macrophages and T cells were suppressed by MeHg, which also interfered with the mucus production and secretion in the goblet cells. Furthermore, MeHg not only affected the cell-cell adhesion of the target cells, but also resulted in disorder of lipid metabolism and immune function, thereby leading to increased susceptibility to pathogenic infections. This study provides an important understanding of the specific responses of intestinal cells to MeHg exposure at the cellular level.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"84 5 Pt 1 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125967","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fish intestine is not only an important digestive and immune organ, but also serves as the first barrier to defend against methylmercury (MeHg) toxicity. Numerous studies have examined the responses of intestine to MeHg, whereas the heterogeneous responses of intestinal cells have not been addressed. In this study, the gilthead seabream were exposed to dietary MeHg, and the gene expression profiles of different intestinal cell populations were examined using scRNA-seq technique. We demonstrated that among the 14 cell types identified, enterocytes, macrophages, T cells and goblet cells were the primary target cell populations exhibiting specific responses to MeHg. Enterocytes appeared to play the most important role in the MeHg transport across the intestinal epithelium as well as intracellular storage. The immune pathways of macrophages and T cells were suppressed by MeHg, which also interfered with the mucus production and secretion in the goblet cells. Furthermore, MeHg not only affected the cell-cell adhesion of the target cells, but also resulted in disorder of lipid metabolism and immune function, thereby leading to increased susceptibility to pathogenic infections. This study provides an important understanding of the specific responses of intestinal cells to MeHg exposure at the cellular level.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.