Bingbing Zhu, Qingnan Cai, Yaxin Liu, Sheng Zhang, Weifeng Liu, Qiong He, Lei Zhou, Zhensheng Tao
{"title":"Nanometre-resolution three-dimensional tomographic and vectorial near-field imaging in dielectric optical resonators","authors":"Bingbing Zhu, Qingnan Cai, Yaxin Liu, Sheng Zhang, Weifeng Liu, Qiong He, Lei Zhou, Zhensheng Tao","doi":"10.1038/s41565-025-01873-9","DOIUrl":null,"url":null,"abstract":"<p>All-dielectric optical nano-resonators have emerged as low-loss, versatile and highly adaptable components in nanophotonic structures for manipulating electromagnetic waves and enhancing light–matter interactions. However, achieving full three-dimensional characterization of near fields within dielectric nano-resonators poses great experimental challenges. Here we develop a technique to image near-field wave patterns inside dielectric optical nano-resonators using high-order sideband generation. By exploiting the phase sensitivity of various harmonic orders, which enables the detection of near-field distributions at distinct depths, we achieve three-dimensional tomographic and near-field imaging with a transverse resolution of ~920 nm and a longitudinal resolution of ~130 nm inside a micrometre-thick silicon anapole resonator. Our method offers high-contrast polarization sensitivity and phase-resolving capabilities, providing comprehensive vectorial near-field information and could be applied to diverse dielectric metamaterials.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"40 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01873-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
All-dielectric optical nano-resonators have emerged as low-loss, versatile and highly adaptable components in nanophotonic structures for manipulating electromagnetic waves and enhancing light–matter interactions. However, achieving full three-dimensional characterization of near fields within dielectric nano-resonators poses great experimental challenges. Here we develop a technique to image near-field wave patterns inside dielectric optical nano-resonators using high-order sideband generation. By exploiting the phase sensitivity of various harmonic orders, which enables the detection of near-field distributions at distinct depths, we achieve three-dimensional tomographic and near-field imaging with a transverse resolution of ~920 nm and a longitudinal resolution of ~130 nm inside a micrometre-thick silicon anapole resonator. Our method offers high-contrast polarization sensitivity and phase-resolving capabilities, providing comprehensive vectorial near-field information and could be applied to diverse dielectric metamaterials.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.