Self-Healing SA@Borax Binder for In Situ Tuning of the Solid Electrolyte Interfaces for Silicon Anodes

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tongyu He, Yunyun Ding, Hui Zhang, Chenguang Liu, Xiaofei Lou, Siqi Zhu, Xiaojiao Yang, Li Yang, Hongcun Bai
{"title":"Self-Healing SA@Borax Binder for In Situ Tuning of the Solid Electrolyte Interfaces for Silicon Anodes","authors":"Tongyu He, Yunyun Ding, Hui Zhang, Chenguang Liu, Xiaofei Lou, Siqi Zhu, Xiaojiao Yang, Li Yang, Hongcun Bai","doi":"10.1021/acssuschemeng.4c10154","DOIUrl":null,"url":null,"abstract":"Silicon is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity of 4200 mAh g<sup>–1</sup>, environmental friendliness, and wide availability. However, its significant volume expansion during lithiation/delithiation cycles leads to issues such as material crushing, electrical isolation, delamination, and unstable solid electrolyte interface (SEI) film formation, ultimately degrading the electrochemical performance and reducing the cycle life. This study focuses on developing a sodium alginate and borax composite (SA@Borax) binder for silicon-based anodes. Sodium alginate (SA) provides deformability and self-healing properties through chain sliding and hydrogen bond recombination, while the incorporation of boron–oxygen bonds forms a robust three-dimensional network. This network enhances mechanical stability, accommodates the volume changes of silicon nanoparticles, and maintains electrode integrity during cycling. Furthermore, the SA@Borax binder efficiently regulates the SEI film composition, promoting beneficial components that stabilize the SEI film and improve the lithium-ion diffusion rates. Electrochemical tests demonstrate that the Si anode with SA@Borax binder maintains a discharge specific capacity of 1655.80 mAh g<sup>–1</sup> after 500 cycles at a current density of 0.5 A g<sup>–1</sup>, showcasing excellent long-term cycle stability. This research presents a viable strategy for developing high-performance binders for the next generation of lithium-ion batteries.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c10154","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity of 4200 mAh g–1, environmental friendliness, and wide availability. However, its significant volume expansion during lithiation/delithiation cycles leads to issues such as material crushing, electrical isolation, delamination, and unstable solid electrolyte interface (SEI) film formation, ultimately degrading the electrochemical performance and reducing the cycle life. This study focuses on developing a sodium alginate and borax composite (SA@Borax) binder for silicon-based anodes. Sodium alginate (SA) provides deformability and self-healing properties through chain sliding and hydrogen bond recombination, while the incorporation of boron–oxygen bonds forms a robust three-dimensional network. This network enhances mechanical stability, accommodates the volume changes of silicon nanoparticles, and maintains electrode integrity during cycling. Furthermore, the SA@Borax binder efficiently regulates the SEI film composition, promoting beneficial components that stabilize the SEI film and improve the lithium-ion diffusion rates. Electrochemical tests demonstrate that the Si anode with SA@Borax binder maintains a discharge specific capacity of 1655.80 mAh g–1 after 500 cycles at a current density of 0.5 A g–1, showcasing excellent long-term cycle stability. This research presents a viable strategy for developing high-performance binders for the next generation of lithium-ion batteries.

Abstract Image

用于硅阳极固体电解质界面原位调整的自愈合 SA@Borax 粘结剂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信