Defect-Modulated MOF Nanochannels for the Quasi-Solid-State Electrolyte of a Dendrite-Free Lithium Metal Battery

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jialong Jiang, Runhao Zhang, Jiachen Guo, Shiqi Zhang, Xiangtai Min, Ziyang Liu, Ning Liu, Dapeng Cao, Jun Xu, Peng Cheng, Wei Shi
{"title":"Defect-Modulated MOF Nanochannels for the Quasi-Solid-State Electrolyte of a Dendrite-Free Lithium Metal Battery","authors":"Jialong Jiang, Runhao Zhang, Jiachen Guo, Shiqi Zhang, Xiangtai Min, Ziyang Liu, Ning Liu, Dapeng Cao, Jun Xu, Peng Cheng, Wei Shi","doi":"10.1021/acs.nanolett.4c05596","DOIUrl":null,"url":null,"abstract":"Efficient and selective Li<sup>+</sup> transport within the nanochannel is essential for high-performance solid-state electrolytes (SSEs) in lithium metal batteries. Introducing Li<sup>+</sup> hopping sites into SSEs shows great potential for promoting Li<sup>+</sup> transport; however, it typically reduces the Li<sup>+</sup> transport nanochannel size, consequently increasing the energy barrier for Li<sup>+</sup> transport. Herein, we present a molecular defect strategy for MOFs to introduce Li<sup>+</sup> hopping sites and increase the nanochannel size simultaneously as quasi-solid-state electrolytes (QSSEs). Compared with the defect-free Li@UiO-66-based QSSE, the optimized Li@UiO-66-D2-based QSSE exhibits a remarkable 343% enhancement in Li<sup>+</sup> conductivity and improved Li<sup>+</sup> selectivity. Furthermore, the 9 cm × 6 cm Li|Li@UiO-66-D2|LFP pouch cell exhibits excellent cycling performance with high capacity retention. An in-depth mechanism study has unveiled the significant impact of both hopping sites and nanochannel size on Li<sup>+</sup> transport, emphasizing the importance of a molecular defect strategy in enhancing the overall Li<sup>+</sup> transport performance of MOF-based QSSEs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"1 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05596","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and selective Li+ transport within the nanochannel is essential for high-performance solid-state electrolytes (SSEs) in lithium metal batteries. Introducing Li+ hopping sites into SSEs shows great potential for promoting Li+ transport; however, it typically reduces the Li+ transport nanochannel size, consequently increasing the energy barrier for Li+ transport. Herein, we present a molecular defect strategy for MOFs to introduce Li+ hopping sites and increase the nanochannel size simultaneously as quasi-solid-state electrolytes (QSSEs). Compared with the defect-free Li@UiO-66-based QSSE, the optimized Li@UiO-66-D2-based QSSE exhibits a remarkable 343% enhancement in Li+ conductivity and improved Li+ selectivity. Furthermore, the 9 cm × 6 cm Li|Li@UiO-66-D2|LFP pouch cell exhibits excellent cycling performance with high capacity retention. An in-depth mechanism study has unveiled the significant impact of both hopping sites and nanochannel size on Li+ transport, emphasizing the importance of a molecular defect strategy in enhancing the overall Li+ transport performance of MOF-based QSSEs.

Abstract Image

在锂金属电池的高性能固态电解质(SSE)中,纳米通道内高效和选择性的 Li+ 传输至关重要。在固态电解质中引入 Li+ 跳跃位点显示出促进 Li+ 输运的巨大潜力;然而,这通常会减小 Li+ 输运纳米通道的尺寸,从而增加 Li+ 输运的能量障碍。在此,我们提出了一种分子缺陷策略,即在 MOFs 中引入 Li+ 跳跃位点,同时增大纳米通道尺寸,使其成为准固态电解质(QSSEs)。与无缺陷的基于 Li@UiO-66 的 QSSE 相比,优化的基于 Li@UiO-66-D2 的 QSSE 的 Li+ 电导率显著提高了 343%,Li+ 选择性也得到了改善。此外,9 cm × 6 cm Li|Li@UiO-66-D2|LFP 袋式电池表现出优异的循环性能和高容量保持率。深入的机理研究揭示了跳跃位点和纳米通道尺寸对 Li+ 传输的重要影响,强调了分子缺陷策略在提高基于 MOF 的 QSSE 的整体 Li+ 传输性能方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信