Unveil the Failure of Alkali Ion-Sulfur Aqueous Batteries: Resolving Water Migration by Coordination Regulation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoyu Yu, Yutong Feng, Jiazhuang Tian, Xin Liu, Boya Wang, Yanyan Zhang, Tengsheng Zhang, Gaoyang Li, Xinran Li, Hongrun Jin, Wanhai Zhou, Wei Li, Zhiyuan Zeng, Laiquan Li, Dongyuan Zhao, Dongliang Chao
{"title":"Unveil the Failure of Alkali Ion-Sulfur Aqueous Batteries: Resolving Water Migration by Coordination Regulation","authors":"Xiaoyu Yu, Yutong Feng, Jiazhuang Tian, Xin Liu, Boya Wang, Yanyan Zhang, Tengsheng Zhang, Gaoyang Li, Xinran Li, Hongrun Jin, Wanhai Zhou, Wei Li, Zhiyuan Zeng, Laiquan Li, Dongyuan Zhao, Dongliang Chao","doi":"10.1002/anie.202503138","DOIUrl":null,"url":null,"abstract":"Sulfur aqueous battery (SAB) is promising owing to its high theoretical capacity and cost competitiveness. Although decoupled electrolyte design has successfully endowed transition metal ion-SABs with customizability to achieve high energy density, its effectiveness in alkali ion-SABs remains problematic. Here, we identify for the first time an intractable phenomenon of alkali-ion-driven water migration between decoupled electrolytes through ex-situ NMR, which is recognized as the origin of the irreversible sulfur redox reactions. To address the challenge, we propose an alkali-ion-H2O-poor coordination strategy to effectively regulate water migration by incorporating low molecular polarity index (MPI) anions. In-situ Raman, synchrotron spectroscopy, and molecule dynamic simulations reveal that the repulsion of low MPI anions to water effectively disrupts the hydration patterns around the alkali cations, and thereby minimizes the concomitant water migration. The elaborated Na+-SAB achieved an ultrahigh capacity of 1634 mAh g−1 (97.7% sulfur utilization) and prolonged stability over 500 cycles. Furthermore, the versatility of alkali-ion-H2O-poor coordination strategy is further substantiated in Li+-SAB and K+-SAB batteries, boosting the scope of following SAB systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"86 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfur aqueous battery (SAB) is promising owing to its high theoretical capacity and cost competitiveness. Although decoupled electrolyte design has successfully endowed transition metal ion-SABs with customizability to achieve high energy density, its effectiveness in alkali ion-SABs remains problematic. Here, we identify for the first time an intractable phenomenon of alkali-ion-driven water migration between decoupled electrolytes through ex-situ NMR, which is recognized as the origin of the irreversible sulfur redox reactions. To address the challenge, we propose an alkali-ion-H2O-poor coordination strategy to effectively regulate water migration by incorporating low molecular polarity index (MPI) anions. In-situ Raman, synchrotron spectroscopy, and molecule dynamic simulations reveal that the repulsion of low MPI anions to water effectively disrupts the hydration patterns around the alkali cations, and thereby minimizes the concomitant water migration. The elaborated Na+-SAB achieved an ultrahigh capacity of 1634 mAh g−1 (97.7% sulfur utilization) and prolonged stability over 500 cycles. Furthermore, the versatility of alkali-ion-H2O-poor coordination strategy is further substantiated in Li+-SAB and K+-SAB batteries, boosting the scope of following SAB systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信