Han Liu, Luting Tang, Tengfei Li, Fan Yi, Wenyan Su, Kai Xiang, Bitao Dong, Ze-Fan Yao, Ke Wang, Tianyu Hu, Zhaozhao Bi, Hairui Bai, Jianhua Chen, Xunchang Wang, Yuhang Liu, Ruijie Ma, Manjun Xiao, Wei Ma, Qunping Fan
{"title":"Hybrid Linking Sites Constructed Non-Fully Conjugated Asymmetric Dimerized Giant Molecule Acceptors for Organic Solar Cells with an Efficiency of ~20%","authors":"Han Liu, Luting Tang, Tengfei Li, Fan Yi, Wenyan Su, Kai Xiang, Bitao Dong, Ze-Fan Yao, Ke Wang, Tianyu Hu, Zhaozhao Bi, Hairui Bai, Jianhua Chen, Xunchang Wang, Yuhang Liu, Ruijie Ma, Manjun Xiao, Wei Ma, Qunping Fan","doi":"10.1002/anie.202503721","DOIUrl":null,"url":null,"abstract":"Linking-site engineering, used to graft two or more monomers, are crucial for achieving high-performance Y-series giant molecule acceptors (Y-GMAs). However, the reported Y-GMAs all use a single-typed linking site, making it difficult to finely-tune their optoelectronic properties. Herein, we develop a non-fully conjugated Y-GMA (named 2Y-we), with hybrid linking sites at the wing and end-group of monomers, to combine the respective advantages of the wing and end-group site linked counterparts. Compared to its parental monomer, 2Y-we shows different intermolecular interaction, crystallinity, packing, and glass transition temperature, allowing optimized active layer morphology (including appropriate phase separation and ordered molecular packing) and stability. Consequently, the D18/2Y-we-based organic solar cells (OSCs) obtain an improved power-conversion-efficiency (PCE) of 17.4% with both higher open-circuit voltage (VOC) and short-circuit current density (JSC), due to the reduced energy loss and efficient exciton dissociation. Inspired by its high VOC×JSC, 2Y-we is introduced into D18:L8-BO to fabricate ternary devices. Thanks to the further optimized morphology and improved charge transport, the ternary OSCs achieve a superior PCE of 19.9%, which is the highest value among the reported non-fully conjugated Y-GMAs. Our developed hybrid linking-site engineering for constructing high-performance Y-GMAs offers an approach to boost device efficiency.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"34 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503721","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Linking-site engineering, used to graft two or more monomers, are crucial for achieving high-performance Y-series giant molecule acceptors (Y-GMAs). However, the reported Y-GMAs all use a single-typed linking site, making it difficult to finely-tune their optoelectronic properties. Herein, we develop a non-fully conjugated Y-GMA (named 2Y-we), with hybrid linking sites at the wing and end-group of monomers, to combine the respective advantages of the wing and end-group site linked counterparts. Compared to its parental monomer, 2Y-we shows different intermolecular interaction, crystallinity, packing, and glass transition temperature, allowing optimized active layer morphology (including appropriate phase separation and ordered molecular packing) and stability. Consequently, the D18/2Y-we-based organic solar cells (OSCs) obtain an improved power-conversion-efficiency (PCE) of 17.4% with both higher open-circuit voltage (VOC) and short-circuit current density (JSC), due to the reduced energy loss and efficient exciton dissociation. Inspired by its high VOC×JSC, 2Y-we is introduced into D18:L8-BO to fabricate ternary devices. Thanks to the further optimized morphology and improved charge transport, the ternary OSCs achieve a superior PCE of 19.9%, which is the highest value among the reported non-fully conjugated Y-GMAs. Our developed hybrid linking-site engineering for constructing high-performance Y-GMAs offers an approach to boost device efficiency.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.